The “Larson” Bundle Wagon

                                                The Larson Hayrack/Bundle Wagon

by Brian Wayne Wells

(As published in the March-April 1996 issue of Belt Pulley magazine.)

The rear end of the light weight Larson wagon can be seen on theleft in this picture as opposed to the heavier construction of a traditional wood beam bundle wagon in the summer of .
This rear view of the light-weight “Larson” wagon on the left side of the feeder of Ira Whitney’s 28″ Case thresher during the summer of 1942, contrasts markedly with the traditional heavy wood construction of wagon on the right.

Threshing shows are appealing because of the opportunity they offer to step back into the past.  At these shows, most public attention is usually given to the threshing machines being powered by an un-styled tractor of the pre-World War II era as opposed to a styled tractor from the post-war era.  When un-styled tractors are used, amateur photographers can often position themselves away from the crowd and take pictures that look like they could have been taken in the 1930s.  Anything that adds a 1930s touch to a threshing scene will appeal to the public.

Generally, at the LeSueur County Pioneer Power Show in LeSueur, Minnesota only modern hayracks built for hauling bales have been employed for hauling bundles of grain to the threshers.  These hayracks, with their rubber tires and lack of side supports and front standards, are of a design that definitely date from the post-World War II baled-hay era.  In recent years, one touch that added authenticity to the threshing scene at the LeSueur Show, was the bundle wagon built by Dennis Waskovsky of Faribualt, Minnesota.  The Waskovsky bundle wagon, with its steel wheels, side supports, and front and rear standards, was a definite addition to the show.  Because it was the only authentic bundle wagon at the LeSueur Show, the Waskovsky wagon was moved from thresher to thresher to allow authentic photos to be taken.

Currently, there is a definite need for more “pre-war” style bundle wagons.  To make the matter even more urgent, the Waskovsky wagon was heavily damaged at the 1995 Show when a strong gust of wind picked it up and flipped it over on its top.  Although Dennis Waskovsky is rebuilding the bundle wagon, interest was kindled for the addition of other genuine bundle wagons.  One such bundle wagon which could be built is the “Larson wagon.”

Not much is known about Mr. Larson, the man who designed the wagon.  Indeed, even Mr. Larson’s first name has been lost over the period of time since he was last contacted by members of the Hanks family in 1935.

The Larson wagon had a good reputation in Faribault county and southern Blue Earth County, Minnesota, as being a very strong and dependable hayrack/bundle wagon.  Building a Larson wagon would not only serve to add authenticity to the LeSueur County Pioneer Power Show, but would preserve another small part of the history of rural Faribault and Blue Earth Counties.

The story of the Larson wagon first intersects with the family of Fred Marshall Hanks starting in 1919.  Fred Marshall Hanks had farmed his parents’ farm in Verona Township, Faribault County, near Winnebago, Minnesota, since the untimely death of his father on January 11, 1916.  Indeed, he had gradually taken over more and more of the operation of the farm long before that time.  He had married Jeanette More Ogilvie from Pilot Grove Township in Faribault County on October 13, 1889, and together they moved into the Hanks farm house with his parents.  They had a son, Howard Bruce Hanks, on October 7, 1895.  Three other sons would follow: John Stanley, on July 27, 1902; Harlan David, on February 21, 1905; and Kenneth Warner, on December 16, 1908.  The Hanks family operated a diversified farm, like most others in Verona Township, raising oats, wheat, corn, and hay.  The livestock consisted of a milking herd, sheep, hogs, and chickens.  Fred Marshall’s father was a master at woodworking, and put this skill to work in a profitable way, building many of the barns in Verona Township and the surrounding area.  In 1900, the Hanks family purchased the 40-acre Baldwin farm which bordered the Hanks farm to the east and moved the Baldwin barn to the Hanks farm building site where it became the “bull barn.”  The Baldwin house was also moved to the Hanks farm where it became a woodworking shop.

Fred Marshall was not interested in woodworking, as was his father.  His interest was consumed in farming.  He loved farming and was constantly looking for ways to improve his methods of farming.  In 1900, as he began to assume more responsibilities of the farm, Fred Marshall gradually began changing the dairy from a cross-bred herd to a purebred Polled Shorthorn herd, schooling himself on the proper traits to develop in an animal for purebred livestock.  A 1904 advertising card (which still exists in the possession of Fred’s son Harlan Hanks) shows that by 1904 Fred Marshall was not only raising his own stock, but was selling purebred Polled Shorthorn cattle and purebred Duroc hogs to other farmers in the area.  By 1910, his reputation had grown to the point that buyers of purebred cattle and/or purebred hogs showed up on the Hanks farm on a regular basis from across the nation to buy breeding stock.

img159
By 1910, visitors to the Fred Marshall Hanks farm in rural Winnebago, Minnesota.

One day in 1919, a farmer by the name of Larson, from Frost, Minnesota, arrived on the Hanks farm to buy one of the purebred Polled Shorthorn bulls.  During the conversation, Mr. Larson divulged that he had devised a new design for a horse-drawn hayrack/bundle wagon.  His “Larson” hayracks were made with curved pieces of metal which served as supports for the sides of the hayrack.  These metal supports connected the sides of the hayrack with the floor.

The sides of earlier hayrack/bundle wagon had been supported by 2 x 4 vertical pieces of wood which were attached to the floor of the wagon.  When this design was found to be too flimsy, diagonal pieces of wood were added to the vertical sides, connecting the sides to the floor at two separate locations about a foot from the outside edge, thus making the wagon stronger because of the triangle that was formed by the support with the floor of the wagon.  However, these diagonals interfered with the men working inside the hayrack unloading loose hay or bundles of wheat or oats with a pitchfork.  The solution to this problem, followed by some hayrack designs, was to have the vertical side supports protrude beneath the level of the floor of the hayrack and to connect the triangulation diagonals from the bottoms of the vertical side supports to the underside of the floor of the hayrack.  The bothersome diagonals were then under the floor of the rack.  This was a better design, but still farmers found that the side supports interfered with any work that had to be done under the wagon, such as removing a wheel on the wagon gear to grease the axle.  The metal supports in the Larson-designed hayrack were the key to the design that made the Larson hayrack/bundle wagon unique.  They eliminated the need for any triangulation support either above or beneath the floor of the hayrack.  This made for a much lighter and cleaner designed hayrack.

Based on this design with the metal supports, Mr. Larson made hayracks for use on his own farm.  His neighbors, having seen the benefits of his design, had requested that he build hayracks of the same style for them or that he provide them with the metal supports so that they could build the hayracks themselves.  As a consequence, the Larson design became quite popular around the Frost area of Faribault County.  Continue reading

Soybean Farming in Butternut Township (Part 2 of 2parts)

Soybean Farming in Butternut Valley Township (Part 2 of 2 parts):

The 1944 Farmall Model H Tractor

by

Brian Wayne Wells

 

As noted, previously, Butternut Valley Township is located in the extreme northwestern corner of Blue Earth County, Minnesota.  (See the first article in this series called “Soybean Farming in Butternut Valley Township [Part 1]” also published in the blog section of this website.)   Also, as previously noted, in 1942 Butternut Valley Township was the home of a particular diversified 160 acre family farming operation.  Our Butternut Valley Township farer and his wife had lived on this farm since they were married in 1919.  As a diversified farming operation, he and his wife milked dairy cows, raised pigs and had a chicken flock.  They sold milk and eggs off the farm for regular income.  Each summer they marketed the pigs they had raised to provide cash income in the summer.  In the fields, they raised oats and hay.  Originally the oats were raised to feed their horses as well as their chickens and the hay was used to feed both the cows and the horses.  Since obtaining a “used” 1929 Farmall Regular tricycle-style tractor in 1937, he had greatly reduced the number of horses his farm.  Thus, he had been able to reduce the number of acres planted to oats and hay each year.  The largest crop on the farm was corn.  Part of the corn crop was cut in August each year, while it was still green.  This corn was then fed into the silo filler and blown into the silo which stood next to the barn.  The silage in the silo would be used all winter to feed the dairy herd.  The remaining corn would be picked in the late autumn and the ears of corn would be stored in the corn crib.  Part of this corn would be shelled and saved to fatten the pigs for market.  The rest of the corn would be sold to provide cash income in the winter.  Consequently, the corn was a cash crop as well as source of animal food.

Since the attack on Pearl Harbor by the Japanese in December of 1941, a new market for plastics had arisen.  Soybeans was the main raw product used in making plastics.  Accordingly, since 1941,. the market price for soybeans had been soaring.  Because he now planted less acres in hay and oats, our Butternut Valley Township farmer decided to plant that extra acreage to soybeans in the spring of 1942.  The growing season of 1942 was almost perfect.  Both soybeans and corn were bumper crops.  Furthermore, the price of these two farm products rose to high levels.  Consequently, our Butternut Valley Township farmer had one of his best years in terms of farm income.  As a result, he seriously think about upgrading his farming operation by trading the old 1929 Farmall Regular in on the purchase of a new modern farm tractor.

After selling his corn, our Butternut Valley Township farmer was able to pay off all his debts and find that he still had a comfortable balance of funds in the bank.  As a result, he again visited the Fesenmaier Hardware dealership.  He had heard rumors that more Famall H’s with rubber tires were starting to be manufactured, again, due to the fact that more rubber was starting to be released by the government for civilian production.  This time he told the staff at the Fesenmaier dealership to place his name on the list for a rubber-tired Farmall H.  However, he told them he only wanted a Farmall H with rubber tires, electric starting and hydraulics.  He needed the new tractor now more than ever before.

In the spring of 1943, our Butternut Valley Township farmer increased the amount of acreage he planted to soybeans.  He kept waiting for his Farmall H to arrive at the Fesenmaier Hardware dealership.  However, very few Farmall Model H tractors arrived at the dealership in New Ulm, Minnesota in 1943 because the manufacturing capacity of the International Harvester Company was still being dominated by government-military contacts.  By 1943, ⅔ or 66.6% of the Company’s sales contracts were for military hardware.  (Barbara Marsh, A Corporate Tragedy: The Agony of International Harvester  p. 71.)  Consequently, production of farm tractors by the IHC declined even more.  Although already greatly curtailed, production of the Farmall Model H fell off by another 6% in 1943 when compared with the previous year.  Rubber pneumatic tires for the Farmall H had been almost totally unavailable since July of 1942.  However, starting in July of 1943 rubber tires for the Farmall H started to become available again on a limited basis.  (Guy Fay and Andy Kraushaar, Farmall Letter Series Tractors [MBI Publishing Co.: Osceola, Wisconsin, 1998] p. 73.)  Thus, the rumors that our Butternut Valley Township farmer had heard in the early spring of 1943, that rubber tires were once again becoming available for Farmall tractors, proved to be a bit premature. Continue reading

Soybean Farming in Butternut Township (Part I of 2 Parts)

Soybean Farming in Butternut Valley Township (Part 1 of 2 parts)

by

Brian Wayne Wells

 

Although officially organized May of 1858, settlement in Butternut Valley Township, Blue Earth County, Minnesota, was still quite new in 1900.  As previously noted, the first settlers in Butternut Valley Township raised wheat.  (See the article called “Case Part II: Steam Engines and Threshers” in the March/April 2006 issue of Belt Pulley magazine.)  Wheat was the predominate crop in Butternut Valley Township and the neighboring townships of Cambria, Judson, Garden City and Lincoln Townships.  However, as the twentieth century progressed wheat production declined as corn replaced wheat on farms.  By 1921, more that 109,778 acres of corn were planted and harvested in the whole of Blue Earth County while wheat acreage had decreased to 43,520 acres for the county as a whole.  With the coming of the Second World War, production of corn continued dominate the agricultural landscape of Blue Earth County reaching 136,900 acres of corn harvested in 1943.  Meanwhile, wheat production in Blue Earth County fell to a miniscule 7,600 acres in 1943.

During the same period of time, other changes were occurring on Blue Earth County farms that were reflected in the crops that were raised in the county.  Acreage allotted to the raising of hay in Blue Earth County fell from 59,505 acres harvested in 1921 to 41,100 acres harvested in 1943.  This reflected the fact that farmers were purchasing more farm tractors and selling off their horses.  Consequently, they no longer needed to feed the horses all year long.  Thus, the average farm could reduced the amount of hay raised each year.  As a result, the average farm in Blue Earth County had acreage that could now be devoted to some other crop.

For a time in the 1920s barley production rose to fill this gap in production acreage on the average farm in Blue Earth County.  In 1921, only 7,134 acres of Blue Earth County’s arable land was planted to barley.  However, in 1927 barley acreage shot up to 12,300 acres.  In 1928 barley acreage in the county doubled to 25,200 acres.  Eventually, the dramatic growth of acreage planted to barley in Blue Earth County reached a total of 33,800 acres in 1938.  However, barley production in Blue Earth County fell as dramatically as it had grown.  By 1943, the acreage devoted to barley in the county fell to only 5,400 acres and in the following year (1944) barley acreage fell to a mere 700 acres in the county.

Coinciding with the decline in the production of in barley was a rise in the production of flax in Blue Earth County.  In 1938 only 2,300 acres of flax had been raised in Blue Earth County.  However, in 1939 flax acreage shot up to 11,900 acres.  Blue Earth County production of flax continued to climb and in 1943, 20,300 acres in the county was planted to flax.  However, in 1944, acreage planted to flax was cut in half—down to only 9,500 acres in the county as a whole.  As suddenly as it had appeared, flax production fell to nothing.  Farmers in Blue Earth County were turning to production of something else apart from wheat, apart from barley and apart from flax.  The crop to which they turned was the lowly soy bean.

Native to the orient, where it was a staple of human consumption, the soybean was introduced in the United States in 1804.  In 1879, two agricultural stations in New Jersey started growing and working with the soybean.  Ten years later, in 1889, several more agricultural experiment stations were actively researching the soybean.  In 1896, famous botanist George Washington Carver, from Tuskegee Institute in Tuskegee, Alabama, discovered and refined over 300 by-products derived from the soybean.  The two most important marketable products of soybeans were edible oil and meal.  In 1922, the first soybean processing plant in the United States was opened.

However the soybean lacked a lucrative market for itself or any of its many by-products.  Henry Ford set out, in the 1930s, to develop a market for the soybean.  First he sought to make a bio-fuel from soybeans which would power the growing number of automobiles that were starting to populate the nation.  (Robert Lacey, Ford: The Men and the Machine [Little Brown Co. Pub.: Boston, 1986] p. 231.)  Only later, did he and his Ford Company engineers create a plastic from soybeans that could be used in the Ford car.  (Ibid. p. 233.)  In 1937, Ford built a soybean processing plant right on the grounds of the Ford Company Rouge Works factory located on the banks of the Rouge River in Detroit Michigan.  (Ibid.)  Soon, plastics comprised about two pounds of the weight of every Ford car manufactured.  However, the two pounds of plastics in Ford cars were limited to small parts like insulated casings and knobs and buttons on the interior of the car.  (Ibid.)  This was still did not represent a major market for soybeans and their products.

Despite all this early attention and product research, the potential of soybeans remained unrealized—a promising product without a real market.  Accordingly, soybeans remained a side line venture in agriculture until the Second World War.  With the United States’ sudden entry into the war, there arose a real demand for clear lightweight plastics products—especially, for windshields and cowlings on military aircraft.  Stimulated by military purchases of airplanes fitted with plastic cowlings and windshields, the price of soybeans soared.  Farmers began planting soybeans in a big way.  The farmers of Blue Earth County followed this trend.  In 1941, the last year before the war, only 3,400 acres of the arable land in the whole of Blue Earth County had been planted to soybeans.  However, in 1942, soybean acreage in the county tripled—reaching 11,100 acres.  By 1945, the acreage devoted to soybeans in Blue Earth County would nearly triple again—up 31,000 acres. Continue reading

Egg Raising in Dryden Township in Sibley County Minnesota (Part 2 of Two Parts )

A McCormick-Deering “Little Genius” Plow in Dryden Township (Part II)

 by

Brian Wayne Wells

This article is the second part of a two-part series of articles which was not published in the Belt Pulley magazine.

 

In 1940, as previously noted, a particular farmer and his wife were engaged in diversified farming on a 160 acre farm in Dryden Township in Sibley County, Minnesota.  (See the first article in this series called “A McCormick-Deering ‘Little Genius’ Plow in Dryden Township [Part I]” contained in the January/February 2009 issue of Belt Pulley magazine.)  Also as noted previously, our Dryden Township farmer had used the money received from the unusually large “bumper” corn crop of 1939 to purchase a used 1935 Farmall Model F-20 tractor, a two-row mounted cultivator and a new two-bottom McCormick-Deering “Little Genius” No. 8 plow with 14 inch bottoms from his local International Harvester Company (IHC)  dealership—Thomes Brothers Hardware located  in Arlington, Minnesota (1930 pop. 915).

Since its introduction in 1928, the Little Genius plow had become one of the most popular tractor trailing plows sold in the North America.  The Little Genius plow replaced an earlier McCormick-Deering plow called the “Little Wonder.”  The Little Wonder had proved to be a disappointment to IHC and to farmers that used the plow.  Because of its light construction and because of the lack of clearance under the frame, the Little Wonder had trouble plowing in any kind of soil conditions especially in fields with any trash on the surface of the ground.  The Little Wonder tended to clog up in trashy conditions and never seemed to adequately turn the soil over the way a mold board plow should.  The Little Wonder was such a bad plow that farmers used to say that it was “‘little wonder’ that the plow was able to plow at all.” Continued production of the Little Wonder threatened to permanently ruin the International Harvester Company’s reputation as a plow manufacturer.  Introduction of the “Little Genius” plow turned all of that around, however.  In reaction to the criticism of the Little Wonder plow, the Little Genius plow was designed to be a much heavier plow.  Furthermore, the Little Genius was unmatched in clearance under the frame.  The Little Genius could handle a great deal of trash without clogging.  Additionally, the bottoms of the Little Genius plow were more sharply angled to assure a complete roll over of the soil and to completely bury trash that was lying on the surface of the ground.  Thus, the Little Genius tended to work well in fields with a lot of trash on the surface of the ground. However, the sharp angle of the bottoms of the Little Genius plow meant that the plow had an increased load or draft as the plow was pulled across the field.  Thus, the Little Genius plow needed to be matched to tractors with more horsepower than mold board plows designed with a less angle to their bottoms—such as the Oliver A-series Model 100 Plowmaster.

Our Dryden Township farmer was pleasantly surprised at the low price that Thomes Bros. offered for the purchase of the used 1935 F-20 tractor, the new cultivator and the new Little Genius plow.  So, in the early spring of 1940, he signed the sales agreement with the Thomes Bros. Hardware dealership to purchase the tractor, plow and cultivator.  Our Dryden Township farmer was anxious to get into the fields with the tractor and new plow and so he took immediate delivery of the tractor and plow.  The winter of 1939-1940 was colder than normal with more than the usual amount of snow.  Accordingly, it looked as though, the spring field work would be delayed because of the large amount of snow.     Continue reading

Egg Raising in Dryden Township, Sibley County Minnesota (Part 1)

Statistics recorded with Counterize - Version 3.1.4

A McCormick-Deering Little Genius Plow at Work in

Dryden Township, Sibley County, Minnesota 

(Part 1 of 2 Parts)

 by

Brian Wayne Wells

(This is a new article that was never published in

Belt Pulley Magazine)

            The more a person works at restoration of an old farm tractor or a farm implement the more one begins to ponder the history of that farm implement.  One wonders, who originally purchased the farm implement.  What kind farming operation was the implement used for?   If curiosity is sufficiently aroused the person restoring the tractor or implement may start making telephone calls back to the person who sold the tractor and may start attempting to establish a chain of ownership of the tractor or implement back to the original owner.  However, the process of establishing the chain of ownership can be extremely difficult as time passes and memories fade.  Furthermore, when purchases of tractors and farm implements are made, as many are, at swap meets and/or auctions and when such purchases are made for cash from individuals unknown, the chain of ownership can be extremely difficult to reconstruct.  (Just how difficult it is to start reconstructing the history of a tractor when time passes is described in the two-part series of articles contained in the July/August 2008 and November/December 2008 issues of Belt Pulley magazine which deal with a 1937 Farmall Model F-20 tractor.)  Thus, it is often important to collect history of a particular tractor or implement at the point of sale or at least collect telephone numbers to call back at a later date.

Such pondering over the history of the history of a particular implement was particularly true during the restoration of one particular McCormick-Deering Little Genius 2-bottom plow with 14″ bottoms.  (The actual restoration of this plow is described in the article carried on page 11 of the September/October 1994 issue of Belt Pulley magazine [Vol. 7, No. 5]).  This particular plow was purchased by Mark Wells at the 1993 LeSueur County Pioneer Power Swap Meet.  Luckily, Mark Wells had written down the name and address of the seller of the plow–Larry Hiles of rural Arlington, Minnesota.

Contact was established with Larry Hiles in 1995.  Larry Hiles was living in Arlington Township in Sibley County.  The homestead was located just south of the village of Arlington.  This particular Little Genius plow had been discovered by Larry Hiles parked in the grove of trees that formed the wind break for this homestead.  The farm on which the homestead was located had been originally owned by Earl Nagel.  While living on the farm, Earl Nagel was actively engaged in farming the land.  In about 1956, the homestead on the farm was sold to Raymond Kraels, who was a rural mail carrier.  Raymond Kraels was not actively engaged in farming the land.  On July 12, 1974, Delmar and Bonnie Mae (Kopishke) Trebesch rented and moved onto the homestead on the Nagel/Krael farm.  During the years that the Trebesch family lived on the farm, they had a large garden.  The garden was so big that they needed a tractor plow to turn the soil of the garden at the conclusion of each growing season.  Accordingly, sometime after moving onto the farm, Delmar Trebesch purchased a McCormick-Deering Little Genius 2-bottom plow at a local farm auction.  This was the same McCormick-Deering Little Genius plow that was later sold by Larry Hiles to Mark Wells at the 1993 LeSueur County Pioneer Power Swap Meet and became known as the “Trebesch plow.”

As described in the article in the September/October 1994 issue of Belt Pulley, cited above, this particular Little Genius plow was fitted with 14 inch bottoms and originally had been a steel wheeled plow fitted with McCormick-Deering’s own “round-spoke” steel wheels.  However, the front wheels on this particular plow had been cut down and rims for rubber tires had been welded onto the round spokes of the front wheels.  As noted in the above-cited article, although the “furrow wheel” on the right side of the plow had been fitted with a rim for a 6.00 x 16 inch rubber tire, the land wheel on the left side of the plow was fitted with a rim for a 4.75 x 19 inch tire.  This seemed a rather odd pairing of tires sizes for the front of the plow.  If a farmer were having the steel wheels of the plow cut down to mount rubber tires on his plow, why would he not make the tires on both sides of the plow the same size?

Before the Second World War very few farm implements were sold from the factory with rubber tires.  Nonetheless, as noted in the 1994 article, the International Harvester Company (IHC) had been offering the Little Genius plow to the farming public with the option of rubber tires as early as the 1930s.  Rubber tires were not a common option on the Little Genius plow in the pre-world War II era.  However, during the “pre-war” era, IHC had a contract with the French and Hecht Company (F.& H.) of Davenport, Iowa, to supply rims for all the rubber-tired equipment sold under the McCormick-Deering name.  Pursuant to this contract, F.& H. supplied their familiar “round spoke” wheel rims to IHC.  When the option of rubber tires were requested on the Little Genius plow, IHC fitted the plow with a 6.00 x 16 inch tire on the furrow wheel and a 4.75 x 19 inch tire on the land wheel.

This followed the design pattern of the original steel-wheeled Little Genius plow, in which the land side wheel was bigger in diameter that the furrow wheel. The reason for this wheel configuration was that the land wheel was the wheel connected to the clutch of the plow.  The clutch on the land wheel was the mechanism that lifted the entire plow out of the ground when the trip rope was pulled at the end of the field.  Consequently, it was thought that a larger diameter wheel was needed to provide the traction and leverage necessary to pull the plow out of the ground in some heavy soil conditions where the surface of the ground was slippery.  This was the situation when plowing succulent green vegetation (green fertilizer) into the soil.  The land wheel rolling along on the vegetation could become slippery from the succulent plant life crushed under the land wheel.  Then when the trip rope in pulled the land wheel might slide along the surface of the ground rather than continuing to turn and lifting the plow out of the ground.  Accordingly, it was decided that the land wheel should be larger in diameter so as to provide more leverage when the clutch was engaged to pull the plow out of the ground.  As a result, the steel-wheeled version of the Little Genius plow was fitted with a 30 inch steel wheel on the land wheel side of the plow and a 24 inch steel wheel on the furrow wheel side of the plow.

Thus, when the optional rubber tires were installed on the Little Genius plow at the factory in Canton, Illinois, the plow was fitted with a land wheel and tire of a larger diameter than the furrow wheel of the plow.  During the immediate pre-war era, the 6.00 x 16 inch tire was becoming the most commonly used tire on automobiles.  However, the 4.75 x 19 inch tire was also a well-known and popular size tire, it was the size of tire that was used on the very popular Ford Model A car.  Thus, the configuration of a 6.00 x 16 inch tire on the furrow wheel and a 4.75 x 19 inch tire on the land wheel became the standard configuration for Little Genius plows sold with rubber tires before the Second World War.  A 1941 picture of the showroom of the Johnson Bros IHC Dealership of Taylorsville, Illinois bears this out.  In the foreground of the picture is a new rubber-tired version of the Little Genius plow with a 6.00 x 16 inch tire on the furrow wheel and a 4.75 x 19 inch tire on the land wheel side of the plow.

During the Second World War hardly any rubber was available for civilian use.  Consequently, IHC reverted to steel wheels on its new farm equipment.  Some time during the Second World War, the contract with F.& H. was terminated and IHC signed another supply contract for rims with the Electric Wheel Company of Quincy, Illinois.  The wheels provided by the Electric Wheel Company were “disc-type” wheels.  Thus, the “post-war” McCormick-Deering Little Genius plow becomes distinguishable from the “pre-war” Little Genius plow fitted with rubber tires, in that disc-type wheels characterized post-war Little Genius plows and F.& H. round-spoke wheel rims characterized pre-war Little Genius plows fitted with rubber tires.   Thus, when cutting down the steel wheels of the Trebesch plow, someone had done a lot of work to make the plow appear as though it came from the factory as a rubber tired plow during the pre-war era.

By 1974, when Delmar Trebesch ended up being the highest bidder on this particular “Little Genius” plow, the increased size of the average farming operation and the larger equipment used on the average farm had definitely made this two-bottom tractor trailing plow into an “antique” from a bygone era.  However, there was a time when this particular Little Genius plow had been a new object of attention for a particular farmer looking to modernize his farming operation.  Continue reading

Potato Farming in North Dakota with a 1937 Famall F-20 (Part 2)

Statistics recorded with Counterize - Version 3.1.4

Potato Farming in No. Dakota with A 1937 F-20 (Part II)

by Brian Wayne Wells

(As published in the November/December 2008 issue of

Belt Pulley Magazine)

As noted previously, Walsh County, North Dakota borders the Red River of the North in eastern North Dakota.  (See the first article in the series called “Potato Farming in North Dakota [Part I]” contained in the July/August 2008 issue of Belt Pulley magazine.)  Because of its location and its light rich soils, Walsh County traditionally leads all 53 counties of North Dakota in the production of potatoes.  Indeed, some years, Walsh County produces 40% of the North Dakota’s total annual potato crop.  Walsh County is divided into 37 townships.  The townships on the extreme eastern edge of Walsh County that border the Red River are not the leading townships in the county in potato production.  Rather it is the “second range” of townships back from the Red River that are regarded as the best locations for the growing of potatoes.  Among this second tier of townships in Walsh County is Martin Township.

As noted previously, Martin Township was, in 1936, the home of a particular farmer and his wife and two children.  Together they lived on a diversified 160-acre farm on which they raised potatoes as a primary cash crop.  However, they also raised spring wheat, corn, oats and hay.  They also milked a small herd of Holstein dairy cattle.  They had a chicken house full of laying hens and a few hogs in an attempt to diversify the sources of farm income as much as possible.  Consequently, a large portion of the arable land of their farm was taken up by pastureland and crops used as feed for the animals on the farm.  Martin Township was located so far north in the Midwest that the typical growing season was only 110 days long, extending only from an average last frost in the spring on about May  11 until the first killing frost in the fall on about September 11.  Corn which requires a 120-day season, does not, therefore, have enough time to mature in Martin Township.  This far north, corn is not a cash crop and is used as an animal feed on the farm.  Consequently, all the corn, raised by our Martin Township farmer was chopped green and put in the silo to be fed to his dairy herd.  Only wheat and potatoes were sold as cash crops.

As the growing season approached in the Spring of 1937, our Martin Township farmer was reducing the amount of the acreage to be devoted to oats and hay on his farm for the coming year.  The reason for this was that over the winter of 1936-1937 he had purchased a new row crop tractor which would, eventually, replace the horses on his farm.  As noted previously, this new tractor was a Farmall F-20 tractor bearing the Serial Number 71355.  (Ibid.)  He had purchased No. 71355 from the Honsvald Oil Company in Grafton, North Dakota, the county seat of Walsh County.  (Ibid.)

No. 71355 was a tricycle-style tractor with a narrow front end, and factory-installed 5.50 x 16 inch rubber tires mounted on French and Hecht (F. & H.) round-spoke wheels in the front and 11.25 x 24 inch tires also mounted on F. & H. round-spoke tires in the rear.  Because the tractor had been fitted with rubber tires at the International Harvester Farmall Works factory in Rock Island, Illinois, No. 71355 was also fitted with the optional foot brakes and was fitted with the optional 28-tooth high speed road gear.  With the more common 36-inch rubber wheels in the rear, this optional road gear would have delivered a speed of 7.07 miles per hour (m.p.h.) to the tractor.  However, because No. 71355 was fitted with the optional 24-inch wheels in the rear, the speed of the tractor in every gear was reduced by almost 1/3.  Accordingly, the speeds available to No. 71355 through its four speed transmission were 1.575 mph in first gear, 1.925 mph in second gear, 2.275 mph in third gear and 4.666 mph in the optional fourth gear.  Because this range of speeds was painfully slow for cultivation and other light duty field work, our Martin Township farmer had agreed to the installation of a supplemental high-speed transmission to No. 71355, as a part of the original purchase contract.  The particular high-speed supplemental transmission installed by the Honsvald Oil Company to No. 71355 was the Model HT-2033 supplemental transmission manufactured by the Heisler Company of Hudson, Iowa.  (Ibid.)  The Model HT-2033 supplemental transmission added some very important working speeds back to the tractor that had been taken away by the 24 inch wheels.  These were 3.654 mph in high range of first gear, 4.46 mph in high range of second gear, 5.25 mph in high range of third gear.  Additionally, the new Heisler transmission added a road gear of 11.28168 mph to the F-20 for fast transport down the road when needed.  To be able to use No. 71355 for the most important of summer field work tasks, i.e. cultivation of the row crops, our Martin Township farmer had included the purchase of a Model 229 two-row mounted cultivator as part of the same sales contract with Honsvald.  Additionally, as noted previously, the purchase contract with Honsvald Oil Company also included the purchase of a new Model 12 two-row potato digger.

Throughout most of January and early February, 1937, there had been accumulations of ten to twelve inches of snow on the ground.  However, unseasonably warm temperatures in early March melted the snow entirely by the middle of the month.  Now our Martin Township farmer had to wait for the soil to dry out and warm up.

Our Martin Township farmer knew of the old “rule” which stated that potatoes should be planted each year on Good Friday of the Easter holidays.  However, like most such rules, our Martin Township farmer knew that this rule did not apply to the “far north” of the Midwest where Grafton, North Dakota was located.  Most years in Walsh County, the last heavy frost in the spring occurred in early May.  Furthermore, he suspected that the old rule referred to potatoes planted in gardens in “sheltered” areas around the homestead.  He knew that the soil out in the open fields took a little longer to warm up in the spring than did the soil in the protected areas around the house.

April, 1937 was slightly warmer than normal and so was early May.  The last cold night that even approached a killing frost occurred in mid-April.  Furthermore, the gentle rains that occurred throughout April and May helped warm the soil.  These springtime rains dried quickly in the light soil of his farm and did not unduly delay the field work because of wet conditions.  Accordingly, our Martin Township farmer got into the fields in early May of 1937.   He put the bright, red No. 71355 to work preparing seed bed.  Both the spring wheat and oats could germinate in soil as cool as 37°F while seed potatoes required a temperature of 42°F.  Therefore, our Martin Township farmer and his neighbors usually sowed the spring wheat and the oats before planting the potatoes.  By contrast, corn required a soil temperature of 50°F for planting.  Accordingly, corn was planted only after the potatoes.

Cutting the seed potatoes into pieces ready for the potato planter was a job that employed the whole family and it was an ambitious job to be conducted each spring as planting time arrived.  The average potato might weigh 8 to 12 ounces.  After cutting the potatoes into pieces ready for planting, each piece would weigh about 2.5 oz to 3.75 oz.  In the past, potato growers and their families would cut all the potatoes by hand with a knife.  Our Martin Township farmer remembered that even as a small child, he helped his parents with this daunting task of cutting the potatoes for planting.  His mother would admonish him to be careful to leave two or three “eyes” on each piece of potato he cut.  “Don’t make dummies,” she said, referring to potato pieces which had no eyes.  The eyes of the potato were the locations on the potato where the spouts of the new plant would begin to form once the potato was underground.  Leaving two or more eyes on a seed potato piece would be extra insurance that the seed potato piece would still sprout and grow even if one eye failed to sprout.  Our Martin Township farmer’s mother used to joke with him as a child and say that the potato piece needed two eyes to see which way to grow.  Once cut, the seed potato pieces would be placed in a sack.

He remembered that cutting seed potatoes by hand was a long and arduous task in the spring because the family would have to cut enough potatoes to plant 11,600 pieces for every acre of land they intended to plant to potatoes.  This meant the family would have to cut enough pieces to fill as many as 14 sacks of potato sections for each acre of potatoes they wished to plant.  Currently for the 30 acre field that our Martin Township farmer wished to plant to potatoes, he needed 420 sacks full of seed potato pieces.  Cutting this many seed potatoes would have been impossible for the family alone without hiring on extra help.  However, a relatively recent and ingenious invention made in the 1920s by a local boy, greatly reduced the hand labor of cutting the potatoes into sections in the spring.

During the 1920s, Henry French, from rural Grafton, North Dakota, invented a mechanical potato cutter which would cut small potatoes into two pieces and large potatoes into six pieces.  (Lynda Kenney, The Past is Never Far Away: A History of the Red River Valley Potato Industry [Potato Growers Association Press: East Grand Forks, Minn., 1995] p. 123.)  The French potato “sizer and cutter” was a new invention that greatly reduced the amount of time that was taken up cutting potatoes for planting.  French’s potato cutter also “sized” the potatoes for planting with a mechanical potato planter.  Mechanical potato planters worked much more smoothly when the seed potato pieces were cut into relatively uniform chunks.  The French potato sizer and cutter did a good job at creating uniform chunks for planting in the field.

However, the French potato cutter could not assure that every seed potato piece that was produced by the machine would have an eye.  Thus, some “dummies” or “duds” were produced by the automatic cutting process.  These dummies would be placed in the sack with the other seed potato pieces and would be planted even though they would not grow.  When the potatoes would sprout up through the ground there would  be a “gap” or  a blank in the row where the dummy had been planted.  Our Martin Township farmer began to expect and to tolerate these occasional gaps in the rows of growing potatoes.  He surely did not want to go back to hand-cutting the potatoes with a knife, just to eliminate all dummies. Continue reading

Potato Farming in North Dakota with a 1937 F-20 (Part I)

Statistics recorded with Counterize - Version 3.1.4

Potato Farming in No. Dakota: The 1937 F-20    

by

Brian Wayne Wells

(As published in the July/August 2008 issue of

Belt Pulley Magazine)

            It began like so many other purchases of antique farm machinery.  The late Wayne A. Wells purchased a Farmall Model F-20 at the 1992 LeSueur County Pioneer Power Swap Meet.  Wayne paid for the tractor by means of a check.  Wayne had the habit of making virtually all purchase transactions by means of a check—a habit that has been inherited and is carried on to further extremes by his son, the current author.  Future events would prove how extremely fortunate it was that the purchase was made by means of a check.

This particular F-20 was missing its serial number tag.  However, the serial number imprinted on the frame of the tractor was 71355.  The tractor was fitted with two 6.00 X 16 inch car tires mounted on IHC cast iron drop-center, or demountable, rims in the front.  One of the first improvements to the tractor was to replace these old car tires with two new 5.50 X 16 inch tri-rib tires.  No. 71355 was also fitted with 13 X 36” rubber tires mounted on IHC cast-iron demountable rims in the rear.  The rear tires were in extremely bad shape and in April of 1993 they too were replaced with brand new tires.

No. 71355 was only the second tractor to be restored by Wayne Wells, (the first tractor to be restored was the 1945 Farmall B bearing the serial number 130161, which is mentioned in the article called “Farmall B: Second Tractor on the Farm, but First in the Heart” contained in the November/December 1993 issue of Belt Pulley), both Wayne and his two sons, Mark and the current author, were anxious to parade the tractor at the LeSueur County Pioneer Power Show to be held on the last weekend in August 1992.  Accordingly, No. 71355 was painted prior to any overhaul of the engine being performed.  (Indeed, a very “smoky” but painted, No. 71355 can be seen being driven by Mark Wells in the parade at the 1992 LeSueur Show in the second hour portion of Disc/Tape No. 1 of the International Harvester Promotional Movie collection.  The current author can be seen in the same movie driving the same 1945 Farmall B mentioned above, just ahead of No. 71355 in the parade.)  The badly needed engine overhaul of No. 71355 was conducted in large part over Christmas of 1992.  (Some of this work performed on No. 71355 over that Christmas was filmed and can be seen on the second hour portion of Disc/Tape No. 2 of the International Harvester Promotional Movies.)  In April of 1993, No. 71355 was pulled and started for the first time following the engine overhaul.  (This procedure of pulling No. 71355 with the 1945 Farmall B in April of 1993 can be seen on the second hour portion of Disc/Tape #5 of the International Harvester Promotional movie collection.)

As the restoration of No. 71355 proceeded, history of the tractor was examined.  Nothing of the actual history of No. 71355 was known.  Consequently, the history of the tractor was a topic of speculation.  Ordinarily a telephone call to the seller of the tractor would have been the starting point for the research into the history of the tractor.  However, time had passed since the purchase of No. 71355 in April of 1992 and the canceled check bearing the name of the seller of No. 71355 was placed away in storage with the financial papers of the Wells family.  With the check used for payment on the tractor not readily at hand, the seller’s name was not available and not even a beginning could be made as to researching the actual history of the tractor.  Only the features of the tractor itself could be used as clues as to the tractor’s past.  Luckily, the particular and unique features of No. 71355, reveal a good deal about the tractor,

First and foremost was the “tricycle type” design of No. 71355.  The tricycle design positioned the front wheels of the tractor close together.  This configuration allowed the tractor to work in crops which were planted in rows as narrow 30 inches apart.  As a tricycle “row crop” tractor, both front wheels of the tractor were attached to a single bolster.  Thus, both front wheels shared a single pivot point.  This type of steering is called “fifth wheel” type of steering and is different than the “automotive type” steering found in “standard” or “four-wheel” designed tractors in which each wheel has its own pivot point located at the “journal” for that particular wheel.  The fifth wheel type of steering allowed the tricycle designed tractor to turn much more sharply than the automotive type steering.  Thus, the tricycle design and the ability to turn very sharp corners made No. 71355 ideally suited for row crop farm work.

A second feature of No. 71355 that provided a clue as to its history was the optional high-speed road gear that had been installed in the standard transmission of No. 71355.  Standard equipment on the Farmall Model F-20 was a four-speed transmission with speeds of 2⅜ miles per hour (mph) in first gear, 2¾ mph in second gear, 3¼ mph in the standard third gear and 3¾ in fourth gear.  (See the tractor specifications of the F-20 in the IHC Data Book #1: 1900 to 1940 by Alan C. King at page 24.)  However, in the transmission of No. 71355, the standard equipment 3¼ mph third gear had been replaced by the optional 28-tooth gear which resulted in a speed of 7.07 mph.  (See the 28-tooth “high speed” sliding gear listed as part No. 20700D on page 124 of the F-20 Parts Catalog—TC-13-A.)   Consequently, this optional “3rd gear” became the “new road gear” and really was the new “4th gear.”  This was a factory installed option on No. 71355, as evidenced by the fact that the numbers embossed on the base at the shifter lever of the tractor, which reflected the shifting pattern for the gear shift lever, actually had the “3” and the “4” reversed to accurately portray the new gear shift pattern given the installation of this new optional road gear.  (Oscar H. Will and Todd Markle, Collector’s Originality Guide: Farmall Regular and F-Series [Voyaguer Press: St. Paul, Minnesota, 2007] p. 68.)

Installation of this optional road gear was made available only on those F-20s which were fitted with rubber tires.  (Ibid. p. 72.)  Accordingly, it was determined that No. 71355, rolled off the assembly line at the Farmall Works in Rock Island, Illinois, fitted with factory-installed rubber tires.  However, when No. 71355 was manufactured in the second week of December, 1936, the tractor could not have been fitted with the same 36 inch cast-iron wheels with demountable rims that are now mounted on the rear of tractor.  Only in March of 1937, (beginning with the particular F-20 with the serial number 79522) did F-20 tractors begin to be fitted with these International Harvester-made cast-iron demountable rear wheels and rims for rubber tires.  (See the F-20 Parts Book page 207.)  Prior to March of 1937, IHC relied on an outsource contract, they had signed with the French and Hecht Company of Davenport, Iowa, to supply all the rear wheels for all their rubber-tired tractors.

Likewise, the IHC cast-iron demountable drop-center rims, currently, mounted on the front wheels of No. 71355, could not have been mounted on the tractor when the tractor was first built and sold.  IHC began using their own demountable drop center rims for rubber tires on the front wheels only in January of 1938 beginning with the particular F-20 tractors bearing the serial number 109127.  (See page 175 of the F-20 parts book.)  Prior to that time, IHC again relied on its contract with the French and Hecht Company to supply round-spoke rims for all F-20 tractors fitted with 5.50 X 16” rubber tires in the front.  (A French and Hecht round-spoke rim is pictured on page 174 of the F-20 parts book.)  Accordingly, when No. 71355 rolled out of the Farmall Works in Rock Island, Illinois, the tractor did so with rubber tires mounted on French and Hecht round-spoke wheel rims on the front as well as the rear.

Some time after No. 71355 was initially purchased, the tractor was fitted with an auxiliary transmission manufactured by the Heisler Manufacturing Company of Hudson, Iowa.  This auxiliary transmission was located on the power train of the tractor in the open space between the clutch housing on the engine and the standard transmission.  The Heisler auxiliary transmission provided a high range to all the standard speeds of the transmission—in fact doubling the number of speeds available to the tractor.

The Heisler Manufacturing Company made three different models of auxiliary transmissions for the Farmall F-20.  Model number HT-2033 auxiliary transmission would increase the speed of the F-20 tractor by a factor of 2.32 to 1 because of the gear ratio of the auxiliary transmission.  Heisler model number HT-2034 featured a gear ratio of 2.1 to 1 and Heisler model number HT-2035 featured a gear ratio of 1.99 to 1.  The reason for the Heisler Company offering the three different auxiliary transmissions was that the rubber-tired F-20 was offered to the public with different sizes of rubber tires for the rear.  The Heisler Company knew that the size of the rear tires would greatly alter the speeds of any tractor.  The particular model of Heisler auxiliary transmission added to No. 71355 was model HT-2033 with the 2.32 to 1 gear ratio.  The addition of the Heisler Model HT-2033 supplemental transmission to No. 71355, with its optional high speed road gear and with 36” rubber tires in the rear, would have added high range speeds of 5.22 mph in first gear, 6.38 mph in second gear, 7.59 in third gear and 16.4024 mph in fourth gear.  These were hardly necessary or even desirable speeds for field work.  Indeed, they all seemed to be road speeds.  Indeed, the Heisler Company specifically warns against installation of an auxiliary transmission on any F-20 tractor which already has already been fitted with the optional high-speed road gear in the standard transmission.  Continue reading

Raising Poland China Hogs in Waseca County, Minnesota (Part 2)

Raising Poland China Hogs (Part II): The 1936 Farmall Model F-30

by

Brian Wayne Wells

(As published in the September/October 2008 issue of

Belt Pulley Magazine)

            As noted previously, Waseca County is located in the flat plains of southern Minnesota.  (See the article called “Raising Poland China Hogs in Waseca County” in the May-June 2008 issue of Belt Pulley magazine.)  The soil of these plains is a dark, rich, gumbo-type of soil.  This type of soil is perfect for raising corn.  One of the lesser populated townships in Waseca County is Byron Township.  Byron Township is located on the southern boundary of Waseca County.   As noted previously, one particular farmer in Byron Township was celebrating the Christmas holidays of 1935 with his parents and other family members when the great Christmas Eve snow storm of 1935 struck.  The storm isolated the family on the farm for a number of days before the roads were cleared enough for travel off the farm.  (Ibid.)

On this hog farm, Christmas was an important time for the farming operation because it was “farrowing time” for the registered purebred Poland China sows that were owned by our Byron Township farmer.  He was pleased to see that each of his sows had given birth to a large litter of baby pigs during this farrowing season.  Furthermore, the sows and baby pigs all seemed to be adjusting well to each other.  The Poland China sow is known to be a good mother to her pigs, but, as noted in the previous article, our Byron Township farmer had made the decision last summer (1935) to enlarge his breeding stock by adding four new bred gilts.  He now had twelve sows and twelve litters of baby pigs rather than a mere eight litters of previous years.  The four new gilts were “first time mothers.”  Our Byron Township farmer always worried about the emotional reaction of first-time mothers to their first litter of pigs, but now in the weeks following the holidays, he could see that even the young gilts were getting along well with their baby pigs.

The farrowing season kept our Byron Township farmer busy with chores in the hog house.  The whole hog house was divided into separate pens as each of the  twelve “families” had their own pen.  Each sow had to be fed and watered in her own pen twice a day.  As the baby pigs became larger and were able to get around relatively independently, there was less chance of them being, accidentally, laid on and crushed to death by their mother or by the other large sows.  Accordingly, the partitions separating each mother and their litters could be removed and the sows and their litters could be allowed to interact with each other.  Feeding and watering would be more communal and could be simplified to take less time.  Nonetheless, the “hog house chores” of feeding and watering remained a twice-a-day activity.

Having enlarged his breeding stock by 50%, our Byron Township farmer would now have 50% more feeder pigs to raise than in previous years.  Thus, our Byron Township farmer knew that he would be busier this year than ever before—especially, once the springtime field work began.  Currently, our Byron Township farmer had two Farmall Regular tractors available to him on his farm.  Although one of the Farmall Regulars actually belonged to his father, who lived on a separate farm building site located about a ½ mile away.  His father still regularly helped with the day to day farming activities.  They had purchased both of these Farmall Regulars in 1928 with the intent of speeding up their summertime work of cultivating the corn.  Now when they went to the field in the summer with the cultivators mounted on both tractors, they could cover a lot of ground in a short time.  However, they had purchased the two tractors seven years ago.  His father was not as able to do manual labor around the farm as he had in the past.  After all, his father had actually retired and sold the farm to our Byron Township farmer seven years ago.

This last August at the 1935 Minnesota State Fair, while the family was making their annual trip to show the pigs at that fair, our Byron Township farmer had been intrigued by what he saw at the large International Harvester Company exhibit on “Machinery Hill” on the fairgrounds.  The 1935 State Fair was his first real chance to see the full line of tractors that the International Harvester Company was now offering to the farming public.  In July of 1931, International Harvester had introduced a new larger Farmall tractor (Oscar H. Will & Todd Markle, Collector’s Originality Guide: Farmall Regular and F-Series [Voyaguer Press: St. Paul, Minnesota, 2007] p. 51).  When tested at the University of Nebraska from October 9 through October 23, 1931, the new larger Farmall was shown to deliver 20.27 horsepower (hp.) to the drawbar and 30.29 hp. to the belt pulley.  Because of its belt horsepower rating, the tractor became known as the Farmall 30, or the F-30 for short.  Continue reading

Raising Poland China Hogs in Waseca County, Minnesota

Statistics recorded with Counterize - Version 3.1.4

Raising Poland China Hogs in Waseca County, Minnesota (Part I)

by

Brian Wayne Wells

(As published in the May/June 2008 issue of

Belt Pulley Magazine)

            The soil of Waseca County is black, rich, fertile and flat—very flat.  The deciduous forests of southern Wisconsin, called the “big woods,” extended into southern Minnesota up to a point about thirty-miles to the east of Waseca County.  Everything to the west of the big woods, including Waseca County flat prairie land.  Although the land is flat as a tabletop just like the Great Plains further the west, the climate of Waseca County is not at all dry like the climate of the Great Plains.  Indeed, in a normal year, Waseca County will be bathed with 34.7 inches of rainfall.  (From the Waseca page of the city-data.com web site on the Internet.)  The combination of very rich soil and abundant moisture makes Waseca County ideal for raising corn.  A healthy crop of corn requires about 22 inches of rain per year.  As a result of this abundant rainfall and rich soil, Waseca County traditionally produces corn yields that nearly double the national average yield per acre.  In 1921, for example, when the national yield per acre of corn was 27.8 bushels per acre, the yield in Waseca County was 46 bushels per acre.  (From the National Agricultural Statistics Service [N.A.S.S.] webpage of the United States Department of Agriculture [U.S.D.A.] website.)        The three townships along the southern boundary of Waseca County from east to west are New Richland Township, Byron Township and Vivian Township.  A person driving down any dirt road the within these townships in 1935, would see corn fields on both sides of the road, broken only by the driveways leading to the homesteads of the people living along that particular road.  For nearly every mile that a person traveled down that country road, the person would find another crossroad.  The crossroads usually indicated the boundary of another section of land.  Moving ahead into the next section of land the person would once again find corn planted in the fields on both sides of the road.  The only variation in this pattern was the fields of oats and hay.  Corn was the primary cash crop of farmers of Waseca County.  Oats and hay were not cash crops.  Almost all oats and hay raised on the average farm in 1935 was used on the farm—primarily to feed the horses that were needed for the field work in the summer.

Relying only on corn as a cash crop was risky.  If the corn market went “soft” and corn prices fell, the farmer would lose money.  Traditionally, diversification was the method used by farmers to avoid, or mitigate, the effects of “soft markets.”  This was usually accomplished by decreasing the amount of corn raised on the arable land of the average farm and devoting that land to a second cash crop.  Traditionally, wheat was raised as a secondary cash crop.  However, the amount of acreage devoted to wheat each year had been declining in Waseca County for a long time.  Currently, the amount of wheat raised each year was only about a quarter of the amount of corn raised in Waseca County.  The most popular method of diversification used on the farms of Waseca County was to raise pigs.  The rationale was that when corn prices fell, the farmer could feed the corn to pigs on their farm.  Then they could sell the pigs.  Provided that pork prices did not decline together with the corn prices, the farmer might still be able to make a profit despite the low corn prices.

One particular farmer in Byron Township in south central Waseca County, had this principle of diversification imprinted on his mind for most of his young life.  Originally, his grandfather had “homesteaded” this 160-acre “home” farm.  Our current Byron Township farmer’s father had taken over the farming operation from his parents in 1895.  Like their neighbors, they needed to devote 35 acres to pasture for their small herd of dairy cows, 30-35 acres to hay and 35 acres to oats.  The balance of the arable land, approximately 45 to 50 acres was devoted to corn.  The crops were rotated from field to field each year to avoid depleting the soil with any one crop.

A portion of the corn used on this farm had traditionally been used for raising and fattening pgs for market.  However, the balance of the corn not needed for feed was sold to the grain elevator in New Richland in the winter of each year.  The income derived from the sale of the corn crop made up a substantial portion of the cash income of the farming operation, milking the cows and selling cream to the local creamery in New Richland provided the family with a regular income on a year-around basis.  Thus, the dairy operation represented another form of diversification of the farm income.  However, on our Byron Township farmer’s farm, it had always been the pig operation that provided the real diversification and alternate cash income when corn prices were low.  All through the 1920s, the price of corn, cycled regularly from an average annual low of $.75 per bushel to an average annual high of $1.19 per bushel.  Likewise, during the 1920’s, the wholesale price of hogs had cycled on an annual basis from an average low of $8.29 per hundred weight up to $11.21 per hundred weight.

Generally, the corn in the corn crib was shelled out in February or March each year.  After filling the granaries to feed the pigs for the rest of the year, the remainder of the shelled corn could be taken to the grain elevator in New Richland straight from the sheller and sold.  This provided the family with the major portion of their winter income on the farm.  The feeder pigs generally reached their market weight in July or August and, thus, could be sold at that time.  This provided the family with the major income in the summer.  This was the pattern of life that our Byron Township farmer knew as he grew up on his parent’s farm.

Gradually, over the years, as our Byron Township farmer grew up into an adult, his father relinquished more and more of the daily decision making regarding the farming operation to him.  It became a true partnership.  Basically, our Byron Township farmer agreed with his father on the course of the farming operation.  His father had been raising pigs for years.  Our Byron Township farmer had always been interested in the hogs.  However, the hog operation took on a whole new importance on his mind when he began showing pigs at the Waseca County Fair.

His very first pig that he had raised and shown at the county fair had been one of the newborn pigs from one of the litters born to his father’s crossbred sows.  That first pig was memorable because the pig had won a blue ribbon at the Fair that year.  Winning the blue ribbon had been more the result of more luck than of skill on his part.  Still he had been hooked.  That blue ribbon perked his interest at an early age to find out all he could about the most profitable ways of raising pigs.

Over their lives, hogs gain 3000% of their own birth weight.  (Sara Rath, The Complete Pig [Voyageur Press: Stillwater, Minn., 2000] p. 78.)  Furthermore, only a short amount of time required for raising the baby pigs for market—generally five to seven months.  Combining this rapid weight gain with the short gestation period of three months, three weeks and three days from breeding until “farrowing”  (giving birth), made the  hog operation on the average farm the most profitable part of the farming operation.  (Kelly Klober, Storey’s Guide to Raising Pigs.[Storey Pub. Co.: North Adams, Mass., 1997] p. 22.)  This rapid turn-around in time from initial investment until profit in hogs compared with the nine month gestation period in cattle and then the nearly two years needed to bring feeder cattle up to their market weight.  (See the article called “A 1931 Farmall at Work in Mower County, Minnesota” in the March/April 2008 issue of Belt Pulley magazine for a description of a small beef operation on a diversified Midwestern farm.)  Our Byron Township farmer and his father both knew that this very rapid turn-around combined with fact that an average sow would farrow a litter usually contained ten baby pigs could generate a great deal of income for the farming operation and  be a real “mortgage lifter.”  It all depended on getting the baby pigs successfully raised to their full market weight.  Proper management was the key.  It all started with the mother sow.  Continue reading

A 1939 Farmall Regular at Work

Statistics recorded with Counterize - Version 3.1.4

A 1931 Farmall Regular at Work in Mower County, Minnesota            by Brian Wayne Wells

(As published in the March/April 2008 issue of

Belt Pulley Magazine)

 

In the years before the First World War, the internal combustion tractor had shown great promise as an efficient power source for use on farms.  Immediately following the First World War, that promise came into fruition as internal combustion powered tractors replacing work horses in the most arduous tasks on the average farm.  During the 1920s, many farmers were performing their heaviest field work; e.g. plowing and discing, with farm tractors.  However, one field task avoided mechanization and still required work horses.  That was the cultivation of row crops—especially corn.  The conventional “four-wheel” or “standard” style farm tractor was not suited, nor had it been designed, for to the task of cultivating row crops.

Ever since 1915, the International Harvester Company had been experimenting with various proto-types and configurations of a motorized self-propelled cultivator.  However, as important as a cultivating machine would be to the average family farm, a separate motorized implement, which would be used only for the task of cultivating row crops in the summer time and would be stored unused on the farm for the remainder of the year, was not deemed the most efficient use of the limited resources of the average family farming operation.  Eventually, the minds the engineers at International Harvester, crystallized around the concept of redesigning the conventional farm tractor into a power source on which a cultivator could be mounted during the summer growing season and from which the cultivator could be removed once the cultivation of row crops was finished.  Such a redesigned farm tractor could be used for all tasks on the average family farm on a year-around basis and could replace the horse entirely on the average family farm.  Because such a redesigned tractor held the promise of performing all tasks on the farm, the International Harvester Company began calling this newly redesigned tractor the “Farmall” tractor.

The conventional “standard” or “four wheel” style tractor had both front wheels mounted wide apart.  Just like an automobile, the front wheels were spaced so that the rear wheels of the conventional tractor traveled in the same paths as the front wheels of the tractor.  Additionally, the standard four wheel tractor had an “automotive style” type of steering in which each front wheel pivoted on its own bolster.  Thus, the standard tractor could turn only as sharply as a car.  On the other hand, the front wheels of the Farmall tractor were mounted close together in a narrow front end configuration.  Both of the front wheels of the Farmall were mounted on the same bolster or pivot point which allowed the front wheels of the Farmall to be turned to a 90° angle from the straight forward line of the tractor.  This type of steering is called “fifth-wheel” steering.  Both because of the narrow front end and the fifth wheel type of steering, the Farmall tractor design has been called the “tricycle design.”  The tricycle design of the Farmall tractor was ideal for the cultivation of row crops.

Thus, in 1924, after nine years of experimentation, the new Farmall went into production at the old Tractor Works located at 2600 West 31st Boulevard (the corner of 24th and Western Avenue) in Chicago, Illinois, beginning with Farmall tractor bearing the Serial Number 0501.  Only 199 Farmalls were produced in 1924.  However, in 1925, the Farmall’s first full year in production, another 837 were manufactured.  Only in 1926, did production of the Farmall hit its stride, with 4,418 Farmalls being made and sold in that year.  The suggested retail price of these new Farmalls was $950.00.  However, in October of 1926, production of the Farmall was relocated to a new factory—the Farmall Works located in Rock Island, Illinois.

Introduction of the innovative new Farmall tractor coincided with some other industrial innovations—large and small.  Some of these innovations were incorporated into the design of the Farmall, even after production of the Farmall had already begun.  One such industrial innovation was rather small in size but proved to be a very important watershed in industrial and farm machine lubrication.  This was the development of the grease gun and the small grease fitting called the “zerk.”  This small innovation came to a great number of farms of North America, “piggy-backed” on the Farmall tractor.  The grease zerk was destined to change a great number of practices on the farm.

The word “zerk” was derived from its inventor—Oscar Ulysses Zerk.  Emmigrating from the Magar region of the Hungarian part of the Austro-Hungarian Empire, Oscar Zerk came to the United States and settled in Kenosha, Wisconsin.  There he developed the famous little grease fitting that still bears his name.  It was the development of the zerk and the parallel development of the grease gun by young Arthur Gulborg that led to a small revolution in lubrication of bearings, shafts and other moving machine parts.  Continue reading

Belt Pulley Magazine Articles by Brian Wayne Wells