Category Archives: Grinding feed with hammermills

The Wayne A. and Marilyn Wells 1950 Farmall M

The Wayne A. and Marilyn Wells 1950  Farmall Model M

by

Brian Wayne Wells

           This article remains under construction.  Periodically, new blocks of text will appear in the article and/or   current blocks of text will be corrected.

            The International Harvester Company introduced the Farmall Model M as a full-three plow tractor in the autumn of 1939.

In early 1950, Wayne Alwin Wells traded the 1942 Farmall Model had been owned his father George Cleveland Wells, in to the Seese and Oksenan dealership in LeRoy, Minnesota, on the purchase of a Farmall Model M.  Pursuant to the purchase contract of this tractor, the Farmall M bearing the Serial No. 2518137 was delivered to the Wayne Wells farm in eastern LeRoy Township, Mower County, Minnesota on March 1, 1950.  Wayne needed to grind up some feed for the baby pigs which had just been weaned.  So he immediately belted the new tractor up to the Case hammer mill which was bolted to the floor of the granary on the farm.

A pre-war version of the Case feed grinder. The particular grinder owned by Wayne A. Wells had been bought by his father George Wells some time during the war years. Consequently, the Wells feed grinder had no galvanized feeder or whirlwind  dust collector.  On the Wells feed grinder both the feeder and the whirlwind dust collector were made of simple sheet metal and painted Case Flambeau Red.   

 

He then went to the house and got his wife, Marilyn (Hanks) Wells and their one-year old son Brian Wayne Wells (the current author of this article).  He also picked up the little Kodak Brownie camera.  He then took a new picture of his son on the operator’s seat of the new tractor with his wife Marilyn holding young Brian securely in the seat.

Just after the Farmall Model M bearing the Serial No. 218137 was delivered to the Wayne A. Wells farm. the new tractor was put to work grinding pig feed for the newly weaned baby pigs.

 

The Wells family held an auction of all their farm equipment in preparation to moving from the farm in 1964.  At the auction Serial No. 218137 was purchased by Dean Shirbourne.

 

In the years since 1964, Dean Shirbourne continued farming.  Most of the machinery Dean used on his farm was International Harvester farm equipment.  He had other more modern Farmall tractors than the 1950 Farmall M he had purchased at the Wayne Wells farm auction.  Accordingly, he placed the 1950 Farmall M bearing the serial number 2518137 under an International Harvester two-row mounted Model 2MH corn picker.  This picker remained on the 1950 Farmall M until Dean retired from farming in 1993.  Every fall the tractor and mounted corn picker was used to “open” the corn fields on the Shirbourne farm and a couple of Dean’s neighbors.  (John Grass Jr., one particular neighbor of Dean Shirbourne remembers using the 1950 Farmall M on his farm.)

Once the mounted picker on No. 218137 had picked the corn in the “end rows” across both ends of the corn field and once the body of the corn field had been “opened” and divided into “lands,”  Dean Shirbourne brought in his two-row New Idea Model 6A pull-type corn picker to pick the remainder of the corn in his fields.  Recognizing that mounted pickers are not the best pickers for “husking” (removing the husks from the ears of ripe corn), Dean Shirbourne  and his neighbors preferred to use pull-type corn pickers to do the main job of picking their corn fields.  Pull-type corn pickers were respected for their large and very efficient husking beds.  Pull-type pickers had the best chance of getting the harvested corn down to a level of 4% or less “foreign material” (husks) in the ear corn crop.

Husking the corn down to a level of 4% foreign material (husks) was the ideal that farmers strove for in order to store the ear corn in normal corn crib over the winter.  Only a level of 4% or less foreign material in the ear corn would allow the cold dry air of winter to flow relatively unobstructed through the ear corn stored in the corn crib and dry the annual crop of corn sufficiently over the winter from the period of time from the harvest in October or November until February or March, when the ear corn would normally be dry enough to be shelled  and stored in a granary.  To store the ear corn in a corn crib at a level of more than 4% foreign material would invite blockage of the flow of air through the crib and invite mold forming on the ear corn.  and risk  without

Thus, once the corn fields were opened and divided into “lands,” Dean Shirbourne and his neighbors could conveniently use their pull-type pickers on the main body of the corn crop.  Thus each year, the 1950 Farmall M was used only for the short period of time each fall that it took to “open” the corn fields on the Shirbourne farm and on the farms of a few of his neighbors.  During the remainder of the year, the 1950 Farmall M bearing the Serial No. 218137 was stored away with its mounted corn picker in the machine shed on the Shirbourne farm.

Thus, from 1964 until Dean Shirbourne retired from farming in 1993, No. 218137 was used only for a couple of weeks in the autumn of  each year to open the corn fields in preparation of the harvest.  Upon his retirement from farming in the 1990s, Dean Shirbourne gave the 1950 Farmall M, bearing the Serial No. 218137, to his  nephew–Mark Mossyge–who beautifully restored the tractor.

 

 

Continue reading The Wayne A. and Marilyn Wells 1950 Farmall M

Oliver Farming in Mower County, Minnesota (Part I): Purebred Suffolk Sheep Raising

Oliver Farm Equipment in Mower County, Minnesota (Part I):

Suffolk Sheep Raising

by

Brian Wayne Wells

Mower County, Minnesota is located on the southern border of the State of Minnesota, adjacent to the State of Iowa.  In 1941, Mower County was a predominately rural county.  Topographically, Mower County is located in a transition area.  Starting in western Mower County and extending into Freeborn County to the west the land becomes very flat.  However the land in eastern Mower County and extending east into Fillmore County the land becomes increasingly more hilly.  Additionally, the soil itself in the eastern part of Mower County is sandy and is not as rich as the darker humus soil in the western part of the county.

Mower County is located on the southern boundary of Minnesota, in a sandy soil part of the state of Minnesota.

 

Located in the extreme southwest corner of Mower County was Lyle Township.  Immediately, to the east of Lyle Township was Nevada Township.  In 1941, on one particular farm in Nevada Township, lived a man and his wife and two adult sons.  Our Nevada Township farmer had lived on this farm all his life.  Indeed, his parents had owned and operated this same farm before him.  As he had come of age on the farm, he had gradually taken over more responsibility for the farming operation from his parents.  In 1919, he had married his wife and together they had moved into the same large house with his parents.  In 1920, when his wife had become pregnant with their eldest son, his parents had decided to officially retire and move into Austin, the county seat of Mower County.  Austin (1940 pop. 18,307) was located in the middle of Austin Township, northwest of Nevada Township and straight north of Lyle Township.

 

Looking north along the main street of Lyle, Minnesota

 

Like many farms in the Midwestern United States, the 160-acre farm on which our Nevada Township farmer and his family lived was “diversified farm.”  Diversified farming operations were those farming operations that raised a variety of crops and animals rather than specializing in only one crop or one type of livestock.  Faced with the typical market fluctuations for the various farm commodities, our Nevada Township farmer, like other diversified farmers sought to avoid “putting all his eggs in one basket.”  Rather than growing only one cash crop or raising only one type of livestock on the farm, our Nevada Township farmer raised corn, oats and hay.  And he milked dairy cows raised pigs, and had about 200 laying hens in his chicken house.  In this way, he hoped that if there was a “softness” or decline in the price of one of these commodity markets, the other commodities would help him maintain a near stable cash income for the year.

With the wooden double corn crib, here on the right side of the photo,  full of ear corn the farmer also fills the cylindrical wire corn crib.   This seems to a bumper crop year.

Traditionally, corn was the main “cash crop” of the farming operation.  However, not all of the corn could be sold for cash.  Some of the corn had to be retained on the farm for animal feed.  First there were the cattle.  In late August, while the corn was still green, a portion of the corn would be chopped and blown into the silo to be fed as “ensilage” to the dairy cows during the winter time.  The rest of the corn was allowed to ripen and the ears of the corn were harvested in October or November each year.

Until 1940 our Nevada Township farmer did all his farming with horses. Here a farmer uses the horses to bring the bundles of corn in from the field, which are then fed into a stationary silo filler. the corn bundles are then chopped and blown into the silo.

 

Currently, there was a neighbor that did custom corn picking for many farmers in the neighborhood.  This neighbor had recently purchased a Wood Brothers Company one-row pull-type corn picker which he used to do the “custom picking in the neighborhood.  Our Nevada Township farmer hired this neighbor each year to pick the corn on his farm.  (Years later another family living in Nevada Township, the Greg and Anita Ferrell family, might have been neighbors of our Nevada Township farmer.  Greg Ferrell is the proprietor of a business dealing in antique tractor parts.  With an inventory consisting of a large number of International Harvester and Farmall tractor parts, Greg Ferrell has attracted the attention of a number of collectors of Farmall tractor collectors including the present author, who has purchased a number of parts from Greg for the Wells family’s growing collection of antique tractors in the years since 2016 after meeting Greg at the LeSueur County Pioneer Power Swap Meet held on April 22, 23 & 24th of 2016 .)

A front view of the Wood Bros. Company one row corn picker.
A front view of the Wood Bros. Company one row corn picker.

Once the corn was harvested, the ear corn was placed in the corn crib where it was allowed to dry all winter in the cold dry air.  In February or March following the harvest the dried most of the ear corn was shelled.  A portion of the ear corn retained on the farm and was ground in the feed grinder—cob and all—to become feed for the milking cows.  The cobs in the cow feed provided a certain amount of roughage for the cattle.  Our Nevada Township farmer provided an additional scoopful of this ground corn to each lactating cow at each milk time.  This small amount of ground corn fed to the lactating cows twice a day allowed the extra calories that the cows needed to continue supplying milk.  Furthermore, since most of the cows were also pregnant, the additional calories in the ear corn also supported the growing unborn calf the cow was carrying.

Part of the ear corn that was shelled each February or March would be stored in the granary to be used as animal feed on the farm.  A portion of the shelled corn would be ground in a feed grinder and fed to the feeder pigs.  Grinding the shelled corn in a feed grinder allowed the pigs to digest the corn easier and more efficiently.  The concentrated calories in corn quickly brought the feeder pigs up to market weight.  Another portion of the corn retained on the farm each year would be fed to the chickens along with some oats.  The calories in corn and the protein in oats would provide a balanced diet for the chickens and kept their egg laying at a maximum.  Because chickens have gizzards, which can digest very coarse food, both the shelled corn and the oats could be fed to the chickens without grinding or other processing.

Our Nevada Township farmer would blend in some oats when grinding the cow feed.  Oats contained less calories and more protein than corn.  Accordingly, the cow feed was not as rich in calories as was the pig feed.  Our Nevada Township farmer did not want the dairy cattle to become fat—like beef cattle.  He wanted a balanced diet.  The milking cows needed more roughage and protein than they needed concentrated calories.  They did not need to put on a great deal of weight like pigs or beef cattle.

Even after sufficient corn had been retained on the farm for all these animals, a large amount of shelled corn remained.  All of this remaining corn would be sold to the Hunting Company grain elevator in the small village of Lyle, Minnesota (1940 pop. 513), located about 9 miles to the southwest of the farm in neighboring Lyle Township.  This corn supplied a large part of the cash income for his farming operation each year.

The Hunting elevator as it looks today.
The Hunting elevator as it looks today.

When our Nevada Township farmer had taken over control of the farming operation from his parents in 1920, horses provided the power for field operations, exclusively.  Accordingly, in addition to feeding the cows, pigs and chickens on his farm, a great portion of the oats and hay, he raised on the farm fed the horses he used on the farm.  Accordingly, one field on the farm had been set aside for raising hay for the horses and the dairy herd.  Although the horses were used primarily only in the summer, they had to be fed all year long.  Additionally, another field had to be set aside each year for the raising oats for feed for the horses, cattle, pigs and chickens on the farm.

EPSON MFP image
Originally advertised as the Model A 3-5 Plow tractor, the standard four-wheel tractor delivered 28 horsepower (hp.) to the drawbar and 44 hp. to the belt pulley.  Thus, the tractor became known as the Model 28-44.

He had been aware, for some time, that he could increase the efficiency of his farming operation by mechanizing the power source on his farm.  Subsequently in 1940, Our Nevada Township farmer obtained a used 1937 Oliver/Hart-Parr Model 28-44 tractor.  This tractor was also called the “3-5 plow tractor.”  The tractor was a “used” tractor, but was only three (3) years old.  The Model 28-44 certainly was a great improvement to his farming operation.  The tractor performed all the heavy duty field work such as plowing and discing much more quickly than with horses.  Previously, these heavy duty field tasks had required the use of four or six horses harnessed together.  As time went by, our Nevada Township farmer even began using the Model 28-44 for lighter duty field work.  He had shortened the tongue on his Oliver/Superior horse-drawn two-row corn planter so that he could use the tractor to pull the planter across the field in the spring.  Our Nevada Township farmer found that he was able to reduce the number of work horses he kept on the farm.  Soon the only field task, which he not able to perform with his Model 28-44 tractor was the cultivation of corn.  As a “standard” or “four-wheeled” tractor, the Model 28-44 was not configured to be fit with a cultivator.  Accordingly, our Nevada Township farmer had to retain some of his horses for this single field task—the cultivation of corn.

An Oliver Hart-Part Model 28-44 Tractor plowing in a field.

Continue reading Oliver Farming in Mower County, Minnesota (Part I): Purebred Suffolk Sheep Raising

Potato Farming in North Dakota with a 1937 F-20 (Part I)

Statistics recorded with Counterize - Version 3.1.4

Potato Farming in No. Dakota: The 1937 F-20    

by

Brian Wayne Wells

(As published in the July/August 2008 issue of

Belt Pulley Magazine)

Grafton Potato Growers Inc.: A major potato buyer of potaotes in Grafton, the county seat of Walsh County, North Dakota.

     It began like so many other purchases of antique farm machinery.  The late Wayne A. Wells purchased a Farmall Model F-20 at the 1992 LeSueur County Pioneer Power Swap Meet.  Wayne paid for the tractor by means of a check.  Wayne had the habit of making virtually all purchase transactions by means of a check—a habit that has been inherited and is carried on to further extremes by his son, the current author.  Future events would prove how extremely fortunate it was that the purchase was made by means of a check.

No. 71355 powering the Wallace Bauleke/Paul Meyer 22 inch McCormick-Deering thresher at the 1993 LeSueur Pioneer Power Show.. This web-site contains an independent article on the history of the Wallace Bauleke/Paul Meyer thresher.

This particular F-20 was missing its serial number tag.  However, the serial number imprinted on the frame of the tractor was 71355.  The tractor was fitted with two 6.00 X 16 inch car tires mounted on IHC cast iron drop-center, or demountable, rims in the front.  One of the first improvements to the tractor was to replace these old car tires with two new 5.50 X 16 inch tri-rib tires.  No. 71355 was also fitted with 13 X 36” rubber tires mounted on IHC cast-iron demountable rims in the rear.  The rear tires were in extremely bad shape and in April of 1993 they too were replaced with brand new tires.

No. 71355, having already been painted but still with the old rear tires,,undergoes an overhaul during Christmas of 1992.

 

No. 71355 was only the second tractor to be restored by Wayne Wells, (the first tractor to be restored was the 1945 Farmall B bearing the serial number 130161, which is mentioned in the article called “Farmall B: Second Tractor on the Farm, but First in the Heart” contained in the November/December 1993 issue of Belt Pulley), both Wayne and his two sons, Mark and the current author, were anxious to parade the tractor at the LeSueur County Pioneer Power Show to be held on the last weekend in August 1992.  Accordingly, No. 71355 was painted prior to any overhaul of the engine being performed.  (Indeed, a very “smoky” but painted, No. 71355 can be seen being driven by Mark Wells in the parade at the 1992 LeSueur Show in the second hour portion of Disc/Tape No. 1 of the International Harvester Promotional Movie collection.

No. 71355 was painted in August of 1993 an was overhauled during Christmas of 1993.

 

The current author can be seen in the same movie driving the same 1945 Farmall B mentioned above, just ahead of No. 71355 in the parade.)  The badly needed engine overhaul of No. 71355 was conducted in large part over Christmas of 1992.  (Some of this work performed on No. 71355 over that Christmas was filmed and can be seen on the second hour portion of Disc/Tape No. 2 of the International Harvester Promotional Movies.)  In April of 1993, No. 71355 was pulled and started for the first time following the engine overhaul.  (This procedure of pulling No. 71355 with the 1945 Farmall B in April of 1993 can be seen on the second hour portion of Disc/Tape #5 of the International Harvester Promotional movie collection.)

While No. 71355 was the second tractor restored by Wayne A. Wells, the 1945 Farmall Model B bearing the serial number 130161 was his first restoration project.

 

As the restoration of No. 71355 proceeded, history of the tractor was examined.  Nothing of the actual history of No. 71355 was known.  Consequently, the history of the tractor was a topic of speculation.  Ordinarily a telephone call to the seller of the tractor would have been the starting point for the research into the history of the tractor.  However, time had passed since the purchase of No. 71355 in April of 1992 and the canceled check bearing the name of the seller of No. 71355 was placed away in storage with the financial papers of the Wells family.  With the check used for payment on the tractor not readily at hand, the seller’s name was not available and not even a beginning could be made as to researching the actual history of the tractor.  Only the features of the tractor itself could be used as clues as to the tractor’s past.  Luckily, the particular and unique features of No. 71355, reveal a good deal about the tractor.

The tricycle design of farm tractors was introduced by the International Harvester Company in 1924 with the “Farmall” tractor. Soon nearly all farm tractor manufcturers around the world were copying the tricycle design for their “row crop” tractors.

 

First and foremost was the “tricycle type” design of No. 71355.  The tricycle design positioned the front wheels of the tractor close together.  This configuration allowed the tractor to work in crops which were planted in rows as narrow 30 inches apart.  As a tricycle “row crop” tractor, both front wheels of the tractor were attached to a single bolster.  Thus, both front wheels shared a single pivot point.  This type of steering is called “fifth wheel” type of steering and is different than the “automotive type” steering found in “standard” or “four-wheel” designed tractors in which each wheel has its own pivot point located at the “journal” for that particular wheel.  The fifth wheel type of steering allowed the tricycle designed tractor to turn much more sharply than the automotive type steering.  Thus, the tricycle design and the ability to turn very sharp corners made No. 71355 ideally suited for row crop farm work.

The single pivot point on the front of the Farmall tractor was the steering bolster on the tractor located in front of the radiator. The particular “open” (non-enclosed) gear and sector plate style steering on the early Farmalls (now called the Farmall Regular) made the Regular somewhat dangerous to drive over rough or rocky ground. After 1932, the Regular was modified and improved and became the Farmall Model F-20 tractor. One of the main improvements made to the Farmall Regular in 1932 was the replacement of the open gear and sector plate type steering with a “worm gear” type of steering in the new F-20. As a result the Farmall Model F-20 tractor was much easier to steer than the Regular.

 

A second feature of No. 71355 that provided a clue as to its history was the optional high-speed road gear that had been installed in the standard transmission of No. 71355.  Standard equipment on the Farmall Model F-20 was a four-speed transmission with speeds of 2⅜ miles per hour (mph) in first gear, 2¾ mph in second gear, 3¼ mph in the standard third gear and 3¾ in fourth gear.  (See the tractor specifications of the F-20 in the IHC Data Book #1: 1900 to 1940 by Alan C. King at page 24.)  However, in the transmission of No. 71355, the standard equipment 3¼ mph third gear had been replaced by the optional 28-tooth gear which resulted in a speed of 7.07 mph.  (See the 28-tooth “high speed” sliding gear listed as part No. 20700D on page 124 of the F-20 Parts Catalog—TC-13-A.)

The 28-tooth sliding gear that would replace 3rd gear in the Farmall Model F-20 transmission to allow the tractor to have a 7.07 mph road speed.

 

Consequently, this optional “3rd gear” became the “new road gear” and really was the new “4th gear.”  This was a factory installed option on No. 71355, as evidenced by the fact that the numbers embossed on the base at the shifter lever of the tractor, which reflected the shifting pattern for the gear shift lever, actually had the “3” and the “4” reversed to accurately portray the new gear shift pattern given the installation of this new optional road gear.  (Oscar H. Will and Todd Markle, Collector’s Originality Guide: Farmall Regular and F-Series [Voyaguer Press: St. Paul, Minnesota, 2007] p. 68.)

Mark Wells discs the newly plowed fields on the grounds of the LeSueur Pioneer Power Show with No. 71355 in August 1994. Loss of the traditional 3rd gear meant a loss of the 3-3/4 mph speed .on No. 71355 meant the loss of a light field work speed.

 

Installation of this optional road gear was made available only on those F-20s which were fitted with rubber tires.  (Ibid. p. 72.)  Accordingly, it was determined that No. 71355, rolled off the assembly line at the Farmall Works in Rock Island, Illinois, fitted with factory-installed rubber tires.  However, when No. 71355 was manufactured in the second week of December, 1936, the tractor could not have been fitted with the same 36 inch cast-iron wheels with demountable rims that are now mounted on the rear of tractor.  Only in March of 1937, (beginning with the particular F-20 with the serial number 79522) did F-20 tractors begin to be fitted with these International Harvester-made cast-iron demountable rear wheels and rims for rubber tires.  (See the F-20 Parts Book page 207.)  Prior to March of 1937, IHC relied on an outsource contract, they had signed with the French and Hecht Company of Davenport, Iowa, to supply all the rear wheels for all their rubber-tired tractors.

The French & Hecht Company factory located in Davenport, Iowa, where the round spoke wheel rims were manufactured.

 

Likewise, the IHC cast-iron demountable drop-center rims, currently, mounted on the front wheels of No. 71355, could not have been mounted on the tractor when the tractor was first built and sold.  IHC began using their own demountable drop center rims for rubber tires on the front wheels only in January of 1938 beginning with the particular F-20 tractors bearing the serial number 109127.  (See page 175 of the F-20 parts book.)

Factory Installation of the high speed road gear in the transmission of No. 71355 indicates that rubbers tires were also installed on the rear of the tractor. Still the IHC-made drop-center rear wheels that are now mounted on rear of No. 71355 could not have been factory installed on the tractor.

 

 

Prior to that time, IHC again relied on its contract with the French and Hecht Company to supply round-spoke rims for all F-20 tractors fitted with 5.50 X 16” rubber tires in the front.  (A French and Hecht round-spoke rim is pictured on page 174 of the F-20 parts book.)  Accordingly, when No. 71355 rolled out of the Farmall Works in Rock Island, Illinois, the tractor did so with rubber tires mounted on French and Hecht round-spoke wheel rims on the front as well as the rear.

A Farmall Model F-20 is delivered to a dealership with smaller 28 inch French & Hecht “round spoke” wheels in the rear, but disc-type wheels in the front.

 

Some time after No. 71355 was initially purchased, the tractor was fitted with an auxiliary transmission manufactured by the Heisler Manufacturing Company of Hudson, Iowa.  This auxiliary transmission was located on the power train of the tractor in the open space between the clutch housing on the engine and the standard transmission.  The Heisler auxiliary transmission provided a high range to all the standard speeds of the transmission—in fact doubling the number of speeds available to the tractor.

A Heisler model H-9 series “step-up” transhission installed on a Farmall F-20 tractor. The tag on the Heisler unit appears to indicate that the gearing of the Heisler unit will increase the speed of the tractor by 2.3 times normal speed in each gear.

 

The Heisler Manufacturing Company made three different models of auxiliary transmissions for the Farmall F-20.  Model number HT-2033 auxiliary transmission would increase the speed of the F-20 tractor by a factor of 2.32 to 1 because of the gear ratio of the auxiliary transmission.  Heisler model number HT-2034 featured a gear ratio of 2.1 to 1 and Heisler model number HT-2035 featured a gear ratio of 1.99 to 1.  The reason for the Heisler Company offering the three different auxiliary transmissions was that the rubber-tired F-20 was offered to the public with different sizes of rubber tires for the rear.  The Heisler Company knew that the size of the rear tires would greatly alter the speeds of any tractor.  The particular model of Heisler auxiliary transmission added to No. 71355 was model HT-2033 with the 2.32 to 1 gear ratio.  The addition of the Heisler Model HT-2033 supplemental transmission to No. 71355, with its optional high speed road gear and with 36” rubber tires in the rear, would have added high range speeds of 5.22 mph in first gear, 6.38 mph in second gear, 7.59 in third gear and 16.4024 mph in fourth gear.  These were hardly necessary or even desirable speeds for field work.  Indeed, they all seemed to be road speeds.  Indeed, the Heisler Company specifically warns against installation of an auxiliary transmission on any F-20 tractor which already has already been fitted with the optional high-speed road gear in the standard transmission.   Continue reading Potato Farming in North Dakota with a 1937 F-20 (Part I)

Raising Poland China Hogs in Waseca County, Minnesota

Statistics recorded with Counterize - Version 3.1.4

Raising Poland China Hogs in Waseca County, Minnesota (Part I)

by

Brian Wayne Wells

(As published in the May/June 2008 issue of

Belt Pulley Magazine)

A advertisement of the full line of Farmall tractoirs.

            The soil of Waseca County is black, rich, fertile and flat—very flat.  The deciduous forests of southern Wisconsin, called the “big woods,” extended into southern Minnesota up to a point about thirty-miles to the east of Waseca County.  Everything to the west of the big woods, including Waseca County flat prairie land.  Although the land is flat as a tabletop just like the Great Plains further the west, the climate of Waseca County is not at all dry like the climate of the Great Plains.  Indeed, in a normal year, Waseca County will be bathed with 34.7 inches of rainfall.  (From the Waseca page of the city-data.com web site on the Internet.)  The combination of very rich soil and abundant moisture makes Waseca County ideal for raising corn.  A healthy crop of corn requires about 22 inches of rain per year.  As a result of this abundant rainfall and rich soil, Waseca County traditionally produces corn yields that nearly double the national average yield per acre.  In 1921, for example, when the national yield per acre of corn was 27.8 bushels per acre, the yield in Waseca County was 46 bushels per acre.  (From the National Agricultural Statistics Service [N.A.S.S.] webpage of the United States Department of Agriculture [U.S.D.A.] website.)

The three townships along the southern boundary of Waseca County from east to west are New Richland Township, Byron Township and Vivian Township.  A person driving down any dirt road the within these townships in 1935, would see corn fields on both sides of the road, broken only by the driveways leading to the homesteads of the people living along that particular road.  For nearly every mile that a person traveled down that country road, the person would find another crossroad.  The crossroads usually indicated the boundary of another section of land.  Moving ahead into the next section of land the person would once again find corn planted in the fields on both sides of the road.  The only variation in this pattern was the fields of oats and hay.  Corn was the primary cash crop of farmers of Waseca County.  Oats and hay were not cash crops.  Almost all oats and hay raised on the average farm in 1935 was used on the farm—primarily to feed the horses that were needed for the field work in the summer.

A map of Minnesota which highlights the location of Waseca County in red.

Relying only on corn as a cash crop was risky.  If the corn market went “soft” and corn prices fell, the farmer would lose money.  Traditionally, diversification was the method used by farmers to avoid, or mitigate, the effects of “soft markets.”  This was usually accomplished by decreasing the amount of corn raised on the arable land of the average farm and devoting that land to a second cash crop.  Traditionally, wheat was raised as a secondary cash crop.  However, the amount of acreage devoted to wheat each year had been declining in Waseca County for a long time.  Currently, the amount of wheat raised each year was only about a quarter of the amount of corn raised in Waseca County.  The most popular method of diversification used on the farms of Waseca County was to raise pigs.  The rationale was that when corn prices fell, the farmer could feed the corn to pigs on their farm.  Then they could sell the pigs.  Provided that pork prices did not decline together with the corn prices, the farmer might still be able to make a profit despite the low corn prices.

A township map of Waseca County, Minnesota, showing the location of Byron Township in yellow in the bottom row of Townships.

 

One particular farmer in Byron Township in south central Waseca County, had this principle of diversification imprinted on his mind for most of his young life.  Originally, his grandfather had “homesteaded” this 160-acre “home” farm.  Our current Byron Township farmer’s father had taken over the farming operation from his parents in 1895.  Like their neighbors, they needed to devote 35 acres to pasture for their small herd of dairy cows, 30-35 acres to hay and 35 acres to oats.  The balance of the arable land, approximately 45 to 50 acres was devoted to corn.  The crops were rotated from field to field each year to avoid depleting the soil with any one crop.

This is an arieal view of a farm that looks much like the farm of our Byron Township farmer.

 

A portion of the corn used on this farm had traditionally been used for raising and fattening pgs for market.  However, the balance of the corn not needed for feed was sold to the grain elevator in New Richland in the winter of each year.  The income derived from the sale of the corn crop made up a substantial portion of the cash income of the farming operation, milking the cows and selling cream to the local creamery in New Richland provided the family with a regular income on a year-around basis.  Thus, the dairy operation represented another form of diversification of the farm income.

The Creamery in New Richland, Minnesota.

 

However, on our Byron Township farmer’s farm, it had always been the pig operation that provided the real diversification and alternate cash income when corn prices were low.  All through the 1920s, the price of corn, cycled regularly from an average annual low of $.75 per bushel to an average annual high of $1.19 per bushel.  Likewise, during the 1920’s, the wholesale price of hogs had cycled on an annual basis from an average low of $8.29 per hundred weight up to $11.21 per hundred weight.

Raising pigs on the typical Midwestern farm was usually closely linked to raising corn, because a portion of the corn crop on the average farm could be used to fatten the feeder pigs for market in a relatively inexpensive way.

 

Generally, the corn in the corn crib was shelled out in February or March each year.  After filling the granaries to feed the pigs for the rest of the year, the remainder of the shelled corn could be taken to the grain elevator in New Richland straight from the sheller and sold.  This provided the family with the major portion of their winter income on the farm.  The feeder pigs generally reached their market weight in July or August and, thus, could be sold at that time.  This provided the family with the major income in the summer.  This was the pattern of life that our Byron Township farmer knew as he grew up on his parent’s farm.

Gradually, over the years, as our Byron Township farmer grew up into an adult, his father relinquished more and more of the daily decision making regarding the farming operation to him.  It became a true partnership.  Basically, our Byron Township farmer agreed with his father on the course of the farming operation.  His father had been raising pigs for years.  Our Byron Township farmer had always been interested in the hogs.  However, the hog operation took on a whole new importance on his mind when he began showing pigs at the Waseca County Fair.

On the grounds of the Waseca County Fair with one of the most recognizable features of the Fair and, indeed, of the city of Waseca itself was the Prince popcorn wagon.

 

His very first pig that he had raised and shown at the county fair had been one of the newborn pigs from one of the litters born to his father’s crossbred sows.  That first pig was memorable because the pig had won a blue ribbon at the Fair that year.  Winning the blue ribbon had been more the result of more luck than of skill on his part.  Still he had been hooked.  That blue ribbon perked his interest at an early age to find out all he could about the most profitable ways of raising pigs.

Over their lives, hogs gain 3000% of their own birth weight.  (Sara Rath, The Complete Pig [Voyageur Press: Stillwater, Minn., 2000] p. 78.)  Furthermore, only a short amount of time required for raising the baby pigs for market—generally five to seven months.  Combining this rapid weight gain with the short gestation period of three months, three weeks and three days from breeding until “farrowing”  (giving birth), made the  hog operation on the average farm the most profitable part of the farming operation.  (Kelly Klober, Storey’s Guide to Raising Pigs.[Storey Pub. Co.: North Adams, Mass., 1997] p. 22.)  This rapid turn-around in time from initial investment until profit in hogs compared with the nine month gestation period in cattle and then the nearly two years needed to bring feeder cattle up to their market weight.  (See the article called “A 1931 Farmall at Work in Mower County, Minnesota” in the March/April 2008 issue of Belt Pulley magazine for a description of a small beef operation on a diversified Midwestern farm.)  Our Byron Township farmer and his father both knew that this very rapid turn-around combined with fact that an average sow would farrow a litter usually contained ten baby pigs could generate a great deal of income for the farming operation and  be a real “mortgage lifter.”  It all depended on getting the baby pigs successfully raised to their full market weight.  Proper management was the key.  It all started with the mother sow.

A young Poland China gilt, who is yet to have her first litter of baby pigs, is, nonetheless, regarded as being among the best natural mother of any breed of pigs.

 

Continue reading Raising Poland China Hogs in Waseca County, Minnesota

Case Farming Part III: The Model CC Tractor

  Today Last 24 hours Last 7 days Last 30 days Total
Hits 667 1468 7166 41641 493655
Pages views 500 1009 5724 35592 373256
Unique visitors 219 443 1656 6153 113047
Unique visitors ‪(1h interval)‬ 278 598 2596 10387 253106
Unique visitors ‪(30 min interval)‬ 289 618 2732 10889 262158
Hits per unique visitor 3.05 3.31 4.33 6.77 4.37
Pages per unique visitor 2.28 2.28 3.46 5.78 3.3
J.I. Case Company Part III: Model CC Tractor

by

Brian Wayne Wells

            (As Published in the May/June 2006 issue of

Belt Pulley Magazine)

            In 1924, a revolution occurred in the design of farm tractors.  This revolution had started with the introduction by the International Harvester Company of the Farmall tractor in 1924.  The Farmall was a “row crop” tractor advertised specifically as the tractor that could “do everything on the farm except the family budget” (a quote from the movie “Practical Magic” on Tape/DVD #3 of the International Harvester Promotional Movies).  Soon every tractor manufacturer was introducing their own version of the row crop tractor.  The J.I. Case Company’s first entry into the row crop tractor market was the Model CC tractor, introduced in 1929.  The Model CC contained an engine with a 3 7/8 inch bore and a 5 ½ inch stroke.  Tests of the 4,240 lbs. Model CC at the University of Nebraska, conducted on September 10, 1929, found that the tractor produced 28.79 hp. at the belt pulley and 17.88 hp. at the drawbar.  The Case Model CC tractor was a tricycle-style of tractor.  Although the Model CC had two wheels in front, the two wheels were positioned close together.  This configuration became a standard for row crop tractors and was called the “narrow front end” or “tricycle” design of farm tractors.  The front wheels of the typical tricycle tractor, like the Case Model CC tractor, could fit in the pathway between two rows of corn or other row crops planted 30 or 40 inches apart.

Case Model CC & Gordie Hahn # 1
Gordie Hahn standing at the controls of his restored 1936 Case Model CC tractor.

It was this very ability of the Model CC to cultivate corn that attracted a particular farmer living in Stockholm Township in Wright County, Minnesota. He and his wife operated a 160-acre farm on which they raised oats and hay for his horses, some summer wheat, which they sold, and corn, part of which was used feed and part of which was sold as a cash crop. Our Stockholm Township farmer had eight or nine sows on their farm which, each winter, gave birth or farrowed to about 80 baby pigs. He raised the baby pigs until they reached their ideal market weight of 260 pounds. Given the losses from early death and disease among the baby pigs he would generally end up with 65 to 70 pigs ready for market in the late summer. In the final weeks before market the feeder pigs ate voraciously through the corn. Nonetheless, our Stockholm Township farmer could make a pretty good estimate of the amount of corn that he would need to “finish out” the feeder pigs. In a normal year, he would be able to hire his neighbor who had a large corn sheller to come to his farm and shell out all the ear corn in his corn cribs. He would do this in about February or March each year. He would have that part of the shelled corn that he would not need for the pigs, hauled straight to the Cooperative elevator in Cokato immediately after shelling to be sold. In a normal year, the price of corn would reach the peak of its annual cycle in these winter months.Case Model G feed grinder

Continue reading Case Farming Part III: The Model CC Tractor