Category Archives: Farmall Tractors

Soybean Farming in Butternut Township (Part 2 of 2parts)

++__________Soybean Farming in Butternut Valley Township (Part 2 of 2 parts):

The 1944 Farmall Model H Tractor

by

Brian Wayne Wells

Fuzzy newly formed seed-pods of the soy-bean plant
Fuzzy newly formed seed-pods of the soy-bean plant

As noted, previously, Butternut Valley Township is located in the extreme northwestern corner of Blue Earth County, Minnesota.  (See the first article in this series called “Soybean Farming in Butternut Valley Township [Part 1]” also published in the blog section of this website.)   Also, as previously noted, in 1942 Butternut Valley Township was the home of a particular diversified 160 acre family farming operation.  Our Butternut Valley Township farer and his wife had lived on this farm since they were married in 1919.  As a diversified farming operation, he and his wife milked a Holstein dairy herd, raised pigs and had a chicken flock.  They sold milk and eggs off the farm for regular income.  Each summer they marketed the pigs they had raised to provide cash income in the summer.  In the fields, they raised oats and hay.  Originally the oats were raised to feed their horses as well as their chickens and the hay was used to feed both the cows and the horses.

Diversified farming in Butternut Valley Township, Blue Earth County, Minnesota.

 

Since obtaining a “used” 1929 Farmall Regular tricycle-style tractor in 1937, he had greatly reduced the number of horses his farm.  Thus, he had been able to reduce the number of acres planted to oats and hay each year.  The largest crop on the farm was corn.  Part of the corn crop was cut in August each year, while it was still green.  This corn was then fed into the silo filler and blown into the silo which stood next to the barn.  The silage in the silo would be used all winter to feed the dairy herd.  The remaining corn would be picked in the late autumn and the ears of corn would be stored in the corn crib.  Part of this corn would be shelled and saved to fatten the pigs for market.  The rest of the corn would be sold to provide cash income in the winter.  Consequently, the corn was a cash crop as well as source of animal food.

Image result for Cattle eating silage in a trough 1940s
A Holstein dairy herd being fed corn silage from a silo.

 

Since the attack on Pearl Harbor by the Japanese in December of 1941, a new market for plastics had arisen.  Soybeans was the main raw product used in making plastics.  Accordingly, since 1941,. the market price for soybeans had been soaring.  Because he now planted less acres in hay and oats, our Butternut Valley Township farmer decided to plant that extra acreage to soybeans in the spring of 1942.  The growing season of 1942 was almost perfect.  Both soybeans and corn were bumper crops.  Furthermore, the price of these two farm products rose to high levels.  Consequently, our Butternut Valley Township farmer had one of his best years in terms of farm income.  As a result, he seriously think about upgrading his farming operation by trading the old 1929 Farmall Regular in on the purchase of a new modern farm tractor.

The gray Farmall with red-colored wheels.

 

After selling his corn, our Butternut Valley Township farmer was able to pay off all his debts and find that he still had a comfortable balance of funds in the bank.  As a result, he again visited the Fesenmaier Hardware dealership.  He had heard rumors that more Famall H’s with rubber tires were starting to be manufactured, again, due to the fact that more rubber was starting to be released by the government for civilian production.  This time he told the staff at the Fesenmaier dealership to place his name on the list for a rubber-tired Farmall H.  However, he told them he only wanted a Farmall H with rubber tires, electric starting and hydraulics.  He needed the new tractor now more than ever before.

Wartime advertisement of the Farmall Model H.

 

In the spring of 1943, our Butternut Valley Township farmer increased the amount of acreage he planted to soybeans.  He kept waiting for his Farmall H to arrive at the Fesenmaier Hardware dealership.  However, very few Farmall Model H tractors arrived at the dealership in New Ulm, Minnesota in 1943 because the manufacturing capacity of the International Harvester Company was still being dominated by government-military contacts.  By 1943, ⅔ or 66.6% of the Company’s sales contracts were for military hardware.  (Barbara Marsh, A Corporate Tragedy: The Agony of International Harvester  p. 71.)  Consequently, production of farm tractors by the IHC declined even more.  Although already greatly curtailed, production of the Farmall Model H fell off by another 6% in 1943 when compared with the previous year.  Rubber pneumatic tires for the Farmall H had been almost totally unavailable since July of 1942.  However, starting in July of 1943 rubber tires for the Farmall H started to become available again on a limited basis.  (Guy Fay and Andy Kraushaar, Farmall Letter Series Tractors [MBI Publishing Co.: Osceola, Wisconsin, 1998] p. 73.)  Thus, the rumors that our Butternut Valley Township farmer had heard in the early spring of 1943, that rubber tires were once again becoming available for Farmall tractors, proved to be a bit premature. Continue reading Soybean Farming in Butternut Township (Part 2 of 2parts)

Soybean Farming in Butternut Township (Part I of 2 Parts)

Soybean Farming in Butternut Valley Township (Part 1 of 2 parts)

by

Brian Wayne Wells

Like corn, soybeans were planted in 40 inch rows and when they mature, soybeans tend to cover the 40 inch space between the rows.
Like corn, soybeans were planted in 40 inch rows and when they mature, the rank growth of a mature crop of soybeans tend to cover the 40 inch space between the rows.

 

Although officially organized May of 1858, settlement in Butternut Valley Township, Blue Earth County, Minnesota, was still quite new in 1900.  As previously noted, the first settlers in Butternut Valley Township raised wheat.  (See the article called “Case Part II: Steam Engines and Threshers” in the March/April 2006 issue of Belt Pulley magazine.)  Wheat was the predominate crop in Butternut Valley Township and the neighboring townships of Cambria, Judson, Garden City and Lincoln Townships.  However, as the twentieth century progressed wheat production declined as corn replaced wheat on farms.  By 1921, more that 109,778 acres of corn were planted and harvested in the whole of Blue Earth County while wheat acreage had decreased to 43,520 acres for the county as a whole.  With the coming of the Second World War, production of corn continued dominate the agricultural landscape of Blue Earth County reaching 136,900 acres of corn harvested in 1943.  Meanwhile, wheat production in Blue Earth County fell to a miniscule 7,600 acres in 1943.

 

Butternut Valley Towhship is located on the western boundary of Blue Earth County second from the top below Cambria Township. The Honeymead plant is in South Bend Township on the border with Mankato Township.

 

During the same period of time, other changes were occurring on Blue Earth County farms that were reflected in the crops that were raised in the county.  Acreage allotted to the raising of hay in Blue Earth County fell from 59,505 acres harvested in 1921 to 41,100 acres harvested in 1943.  This reflected the fact that farmers were purchasing more farm tractors and selling off their horses.  Consequently, they no longer needed to feed the horses all year long.  Thus, the average farm could reduced the amount of hay raised each year.  As a result, the average farm in Blue Earth County had acreage that could now be devoted to some other crop.

For a time in the 1920s barley production rose to fill this gap in production acreage on the average farm in Blue Earth County.  In 1921, only 7,134 acres of Blue Earth County’s arable land was planted to barley.  However, in 1927 barley acreage shot up to 12,300 acres.  In 1928 barley acreage in the county doubled to 25,200 acres.  Eventually, the dramatic growth of acreage planted to barley in Blue Earth County reached a total of 33,800 acres in 1938.  However, barley production in Blue Earth County fell as dramatically as it had grown.  By 1943, the acreage devoted to barley in the county fell to only 5,400 acres and in the following year (1944) barley acreage fell to a mere 700 acres in the county.

Coinciding with the decline in the production of in barley was a rise in the production of flax in Blue Earth County.  In 1938 only 2,300 acres of flax had been raised in Blue Earth County.  However, in 1939 flax acreage shot up to 11,900 acres.  Blue Earth County production of flax continued to climb and in 1943, 20,300 acres in the county was planted to flax.  However, in 1944, acreage planted to flax was cut in half—down to only 9,500 acres in the county as a whole.  As suddenly as it had appeared, flax production fell to nothing.  Farmers in Blue Earth County were turning to production of something else apart from wheat, apart from barley and apart from flax.  The crop to which they turned was the lowly soy bean.

Native to the orient, where it was a staple of human consumption, the soybean was introduced in the United States in 1804.  In 1879, two agricultural stations in New Jersey started growing and working with the soybean.  Ten years later, in 1889, several more agricultural experiment stations were actively researching the soybean.  In 1896, famous botanist George Washington Carver, from Tuskegee Institute in Tuskegee, Alabama, discovered and refined over 300 by-products derived from the soybean.  The two most important marketable products of soybeans were edible oil and meal.  In 1922, the first soybean processing plant in the United States was opened.

However the soybean lacked a lucrative market for itself or any of its many by-products.  Henry Ford set out, in the 1930s, to develop a market for the soybean.  First he sought to make a bio-fuel from soybeans which would power the growing number of automobiles that were starting to populate the nation.  (Robert Lacey, Ford: The Men and the Machine [Little Brown Co. Pub.: Boston, 1986] p. 231.)  Only later, did he and his Ford Company engineers create a plastic from soybeans that could be used in the Ford car.  (Ibid. p. 233.)  In 1937, Ford built a soybean processing plant right on the grounds of the Ford Company Rouge Works factory located on the banks of the Rouge River in Detroit Michigan.  (Ibid.)  Soon, plastics comprised about two pounds of the weight of every Ford car manufactured.  However, the two pounds of plastics in Ford cars were limited to small parts like insulated casings and knobs and buttons on the interior of the car.  (Ibid.)  This was still did not represent a major market for soybeans and their products.

Despite all this early attention and product research, the potential of soybeans remained unrealized—a promising product without a real market.  Accordingly, soybeans remained a side line venture in agriculture until the Second World War.  With the United States’ sudden entry into the war, there arose a real demand for clear lightweight plastics products—especially, for windshields and cowlings on military aircraft.

 

Soybean prices in World War II rose because of the plastics used in combat airplane windscreens. Although a direct shot would pierce the safety glass of these safety glass windscreens the safety glass would not shatter and cause injury to the air crew just as a result of flying glass.

 

Stimulated by military purchases of airplanes fitted with plastic cowlings and windshields, the price of soybeans soared.  Farmers began planting soybeans in a big way.  The farmers of Blue Earth County followed this trend.  In 1941, the last year before the war, only 3,400 acres of the arable land in the whole of Blue Earth County had been planted to soybeans.  However, in 1942, soybean acreage in the county tripled—reaching 11,100 acres.  By 1945, the acreage devoted to soybeans in Blue Earth County would nearly triple again—up 31,000 acres. Continue reading Soybean Farming in Butternut Township (Part I of 2 Parts)

Egg Raising in Dryden Township in Sibley County Minnesota (Part 2 of Two Parts )

A McCormick-Deering “Little Genius” Plow in Dryden Township (Part II)

 by

Brian Wayne Wells

This article is the second part of a two-part series of articles which was not published in the Belt Pulley magazine.

 

A McCormick-Deering Little Genius No. 8 two-bottom plow with 14 inch bottoms mounted on steel wheels.

 

In 1940, as previously noted, a particular farmer and his wife were engaged in diversified farming on a 160 acre farm in Dryden Township in Sibley County, Minnesota.  (See the first article in this series called “A McCormick-Deering ‘Little Genius’ Plow in Dryden Township [Part I]” contained in the January/February 2009 issue of Belt Pulley magazine.)  Also as noted previously, our Dryden Township farmer had used the money received from the unusually large “bumper” corn crop of 1939 to purchase a used 1935 Farmall Model F-20 tractor, a two-row mounted cultivator and a new two-bottom McCormick-Deering “Little Genius” No. 8 plow with 14 inch bottoms from his local International Harvester Company (IHC)  dealership—Thomes Brothers Hardware located  in Arlington, Minnesota (1930 pop. 915).

Since its introduction in 1928, the Little Genius plow had become one of the most popular tractor trailing plows sold in the North America.  The Little Genius plow replaced an earlier McCormick-Deering plow called the “Little Wonder.”  The Little Wonder had proved to be a disappointment to IHC and to farmers that used the plow.  Because of its light construction and because of the lack of clearance under the frame, the Little Wonder had trouble plowing in any kind of soil conditions especially in fields with any trash on the surface of the ground.  The Little Wonder tended to clog up in trashy conditions and never seemed to adequately turn the soil over the way a mold board plow should.  The Little Wonder was such a bad plow that farmers used to say that it was “‘little wonder’ that the plow was able to plow at all.”

Image result for mccormick deering little wonder plow images
The McCormick-Deering “Little Wonder” 2-bottom plow was the predecessor to the Little Genius No. 8 plow.

 

Continued production of the Little Wonder threatened to permanently ruin the International Harvester Company’s reputation as a plow manufacturer.  Introduction of the “Little Genius” plow turned all of that around, however.  In reaction to the criticism of the Little Wonder plow, the Little Genius plow was designed to be a much heavier plow.  Furthermore, the Little Genius was unmatched in clearance under the frame.  The Little Genius could handle a great deal of trash without clogging.  Additionally, the bottoms of the Little Genius plow were more sharply angled to assure a complete roll over of the soil and to completely bury trash that was lying on the surface of the ground.  Thus, the Little Genius tended to work well in fields with a lot of trash on the surface of the ground. However, the sharp angle of the bottoms of the Little Genius plow meant that the plow had an increased load or draft as the plow was pulled across the field.  Thus, the Little Genius plow needed to be matched to tractors with more horsepower than mold board plows designed with a less angle to their bottoms—such as the Oliver A-series Model 100 Plowmaster.

Our Dryden Township farmer was pleasantly surprised at the low price that Thomes Bros. offered for the purchase of the used 1935 F-20 tractor, the new cultivator and the new Little Genius plow.  So, in the early spring of 1940, he signed the sales agreement with the Thomes Bros. Hardware dealership to purchase the tractor, plow and cultivator.  Our Dryden Township farmer was anxious to get into the fields with the tractor and new plow and so he took immediate delivery of the tractor and plow.  The winter of 1939-1940 was colder than normal with more than the usual amount of snow.  Accordingly, it looked as though, the spring field work would be delayed because of the large amount of snow.

A gray-painted Farmall Model F-20 tractor with red painted steel wheels.

 

Continue reading Egg Raising in Dryden Township in Sibley County Minnesota (Part 2 of Two Parts )

Egg Raising in Dryden Township, Sibley County Minnesota (Part 1)

Statistics recorded with Counterize - Version 3.1.4

A McCormick-Deering Little Genius Plow at Work in

Dryden Township, Sibley County, Minnesota 

(Part 1 of 2 Parts)

 by

Brian Wayne Wells

(This is a new article that was never published in

Belt Pulley Magazine)

Mark Wells working with the Trebesch plow in the fields on the grounds of the LeSueur Pioneer Power Assoc. in 1994

The more a person works at restoration of an old farm tractor or a farm implement the more one begins to ponder the history of that farm implement.  One wonders, who originally purchased the farm implement.  What kind farming operation was the implement used for?   If curiosity is sufficiently aroused the person restoring the tractor or implement may start making telephone calls back to the person who sold the tractor and may start attempting to establish a chain of ownership of the tractor or implement back to the original owner.  However, the process of establishing the chain of ownership can be extremely difficult as time passes and memories fade.  Furthermore, when purchases of tractors and farm implements are made, as many are, at swap meets and/or auctions and when such purchases are made for cash from individuals unknown, the chain of ownership can be extremely difficult to reconstruct.  (Just how difficult it is to start reconstructing the history of a tractor when time passes is described in the two-part series of articles contained in the July/August 2008 and November/December 2008 issues of Belt Pulley magazine which deal with a 1937 Farmall Model F-20 tractor.)  Thus, it is often important to collect history of a particular tractor or implement at the point of sale or at least collect telephone numbers to call back at a later date.

 

The 1937 F-20 bearing the Serial No. 71355.

 

Such pondering over the history of the history of a particular implement was particularly true during the restoration of one particular McCormick-Deering Little Genius 2-bottom plow with 14″ bottoms.  (The actual restoration of this plow is described in the article carried on page 11 of the September/October 1994 issue of Belt Pulley magazine [Vol. 7, No. 5.  This article is called “The McCormick-Deering  Little Genius Plow” and has also been posted on this website.)  This particular plow was purchased by Mark Wells at the 1993 LeSueur County Pioneer Power Swap Meet.  Luckily, Mark Wells had written down the name and address of the seller of the plow–Larry Hiles of rural Arlington, Minnesota.

Arlington, Minnesota is located in eastern central Sibley County.

 

Contact was established with Larry Hiles in 1995.  Larry Hiles was living in Arlington Township in Sibley County.  The homestead was located just south of the village of Arlington.  This particular Little Genius plow had been discovered by Larry Hiles parked in the grove of trees that formed the wind break for this homestead.  The farm on which the homestead was located had been originally owned by Earl Nagel.  While living on the farm, Earl Nagel was actively engaged in farming the land.  In about 1956, the homestead on the farm was sold to Raymond Kraels, who was a rural mail carrier.  Raymond Kraels was not actively engaged in farming the land.  On July 12, 1974, Delmar and Bonnie Mae (Kopishke) Trebesch rented and moved onto the homestead on the Nagel/Krael farm.  During the years that the Trebesch family lived on the farm, they had a large garden.  The garden was so big that they needed a tractor plow to turn the soil of the garden at the conclusion of each growing season.  Accordingly, sometime after moving onto the farm, Delmar Trebesch purchased a McCormick-Deering Little Genius 2-bottom plow at a local farm auction.  This was the same McCormick-Deering Little Genius plow that was later sold by Larry Hiles to Mark Wells at the 1993 LeSueur County Pioneer Power Swap Meet and became known as the “Trebesch plow.”

Sibley County is located in the rich farm land of southern Minnesota.

 

As described in the article in the September/October 1994 issue of Belt Pulley, cited above, this particular Little Genius plow was fitted with 14 inch bottoms and originally had been a steel wheeled plow fitted with McCormick-Deering’s own “round-spoke” steel wheels.  However, the front wheels on this particular plow had been cut down and rims for rubber tires had been welded onto the round spokes of the front wheels.  As noted in the above-cited article, although the “furrow wheel” on the right side of the plow had been fitted with a rim for a 6.00 x 16 inch rubber tire, the land wheel on the left side of the plow was fitted with a rim for a 4.75 x 19 inch tire.  This seemed a rather odd pairing of tires sizes for the front of the plow.  If a farmer were having the steel wheels of the plow cut down to mount rubber tires on his plow, why would he not make the tires on both sides of the plow the same size?

Before the Second World War very few farm implements were sold from the factory with rubber tires.  Nonetheless, as noted in the 1994 article, the International Harvester Company (IHC) had been offering the Little Genius plow to the farming public with the option of rubber tires as early as the 1930s.  Rubber tires were not a common option on the Little Genius plow in the pre-world War II era.  However, during the “pre-war” era, IHC had a contract with the French and Hecht Company (F.& H.) of Davenport, Iowa, to supply rims for all the rubber-tired equipment sold under the McCormick-Deering name.  Pursuant to this contract, F.& H. supplied their familiar “round spoke” wheel rims to IHC.  When the option of rubber tires were requested on the Little Genius plow, IHC fitted the plow with a 6.00 x 16 inch tire on the furrow wheel and a 4.75 x 19 inch tire on the land wheel.

This followed the design pattern of the original steel-wheeled Little Genius plow, in which the land side wheel was bigger in diameter that the furrow wheel. The reason for this wheel configuration was that the land wheel was the wheel connected to the clutch of the plow.  The clutch on the land wheel was the mechanism that lifted the entire plow out of the ground when the trip rope was pulled at the end of the field.  Consequently, it was thought that a larger diameter wheel was needed to provide the traction and leverage necessary to pull the plow out of the ground in some heavy soil conditions where the surface of the ground was slippery.  This was the situation when plowing succulent green vegetation (green fertilizer) into the soil.  The land wheel rolling along on the vegetation could become slippery from the succulent plant life crushed under the land wheel.  Then when the trip rope in pulled the land wheel might slide along the surface of the ground rather than continuing to turn and lifting the plow out of the ground.  Accordingly, it was decided that the land wheel should be larger in diameter so as to provide more leverage when the clutch was engaged to pull the plow out of the ground.  As a result, the steel-wheeled version of the Little Genius plow was fitted with a 30 inch steel wheel on the land wheel side of the plow and a 24 inch steel wheel on the furrow wheel side of the plow.

The 30 inch steel wheel that was the original standard equipment wheel on the left side (land side) of the plow.

Thus, when the optional rubber tires were installed on the Little Genius plow at the factory in Canton, Illinois, the plow was fitted with a land wheel and tire of a larger diameter than the furrow wheel of the plow.  During the immediate pre-war era, the 6.00 x 16 inch tire was becoming the most commonly used tire on automobiles.  However, the 4.75 x 19 inch tire was also a well-known and popular size tire, it was the size of tire that was used on the very popular Ford Model A car.  Thus, the configuration of a 6.00 x 16 inch tire on the furrow wheel and a 4.75 x 19 inch tire on the land wheel became the standard configuration for Little Genius plows sold with rubber tires before the Second World War.  A 1941 picture of the showroom of the Johnson Bros IHC Dealership of Taylorsville, Illinois bears this out.  In the foreground of the picture is a new rubber-tired version of the Little Genius plow with a 6.00 x 16 inch tire on the furrow wheel and a 4.75 x 19 inch tire on the land wheel side of the plow.

 

Inside the showroom of a typical McCormick-Deering dealership in the immediate pre-war period of 1940 and 1941.

 

During the Second World War hardly any rubber was available for civilian use.  Consequently, IHC reverted to steel wheels on its new farm equipment.  Some time during the Second World War, the contract with F.& H. was terminated and IHC signed another supply contract for rims with the Electric Wheel Company of Quincy, Illinois.  The wheels provided by the Electric Wheel Company were “disc-type” wheels.  Thus, the “post-war” McCormick-Deering Little Genius plow becomes distinguishable from the “pre-war” Little Genius plow fitted with rubber tires, in that disc-type wheels characterized post-war Little Genius plows and F.& H. round-spoke wheel rims characterized pre-war Little Genius plows fitted with rubber tires.   Thus, when cutting down the steel wheels of the Trebesch plow, someone had done a lot of work to make the plow appear as though it came from the factory as a rubber tired plow during the pre-war era.

The left side (land side) wheel on the Delmer Trebesch 2-bottom plow that was fitted with a 19 inch by 4.75 inch Model A Ford car tire.

By 1974, when Delmar Trebesch ended up being the highest bidder on this particular “Little Genius” plow, the increased size of the average farming operation and the larger equipment used on the average farm had definitely made this two-bottom tractor trailing plow into an “antique” from a bygone era.  However, there was a time when this particular Little Genius plow had been a new object of attention for a particular farmer looking to modernize his farming operation.  Continue reading Egg Raising in Dryden Township, Sibley County Minnesota (Part 1)

Potato Farming in North Dakota with a 1937 Famall F-20 (Part 2)

Statistics recorded with Counterize - Version 3.1.4

Potato Farming in No. Dakota with A 1937 F-20 (Part II)

by Brian Wayne Wells

(As published in the November/December 2008 issue of

Belt Pulley Magazine)

Grafton Potato Growers Inc.: A major potato buyer of potaotes in Grafton, the county seat of Walsh County, North Dakota.

As noted previously, Walsh County, North Dakota borders the Red River of the North in eastern North Dakota.  (See the first article in the series called “Potato Farming in North Dakota [Part I]” contained in the July/August 2008 issue of Belt Pulley magazine.)  Because of its location and its light rich soils, Walsh County traditionally leads all 53 counties of North Dakota in the production of potatoes.  Indeed, some years, Walsh County produces 40% of the North Dakota’s total annual potato crop.  Walsh County is divided into 37 townships.  The townships on the extreme eastern edge of Walsh County that border the Red River are not the leading townships in the county in potato production.  Rather it is the “second range” of townships back from the Red River that are regarded as the best locations for the growing of potatoes.  Among this second tier of townships in Walsh County is Martin Township.

A map of North Dakota showing the location of Walsh County. The eastern boundary of North Dakota is formed by the Red river of the North.

 

As noted previously, Martin Township was, in 1936, the home of a particular farmer and his wife and two children.  Together they lived on a diversified 160-acre farm on which they raised potatoes as a primary cash crop.  However, they also raised spring wheat, corn, oats and hay.  They also milked a small herd of Holstein dairy cattle.  They had a chicken house full of laying hens and a few hogs in an attempt to diversify the sources of farm income as much as possible.  Consequently, a large portion of the arable land of their farm was taken up by pastureland and crops used as feed for the animals on the farm.  Martin Township was located so far north in the Midwest that the typical growing season was only 110 days long, extending only from an average last frost in the spring on about May  11 until the first killing frost in the fall on about September 11.  Corn which requires a 120-day season, does not, therefore, have enough time to mature in Martin Township.  This far north, corn is not a cash crop and is used as an animal feed on the farm.  Consequently, all the corn, raised by our Martin Township farmer was chopped green and put in the silo to be fed to his dairy herd.  Only wheat and potatoes were sold as cash crops.

A township map of Walsh county showing the location of Martin Township north of the county seat of Grafton, North Dakota on the northern border of Walsh County.

 

As the growing season approached in the Spring of 1937, our Martin Township farmer was reducing the amount of the acreage to be devoted to oats and hay on his farm for the coming year.  The reason for this was that over the winter of 1936-1937 he had purchased a new row crop tractor which would, eventually, replace the horses on his farm.  As noted previously, this new tractor was a Farmall F-20 tractor bearing the Serial Number 71355.  (Ibid.)  He had purchased No. 71355 from the Honsvald Oil Company in Grafton, North Dakota, the county seat of Walsh County.  (Ibid.)

An advertisement of the Grafton Implement Company, which formerly had been known as the Honsvald Oil Company.

 

No. 71355 was a tricycle-style tractor with a narrow front end, and factory-installed 5.50 x 16 inch rubber tires mounted on French and Hecht (F. & H.) round-spoke wheels in the front and 11.25 x 24 inch tires also mounted on F. & H. round-spoke tires in the rear.  Because the tractor had been fitted with rubber tires at the International Harvester Farmall Works factory in Rock Island, Illinois, No. 71355 was also fitted with the optional foot brakes and was fitted with the optional 28-tooth high speed road gear.  With the more common 36-inch rubber wheels in the rear, this optional road gear would have delivered a speed of 7.07 miles per hour (m.p.h.) to the tractor.

A Farmall model F-20 tractor configured with 24 inch rubber tires in the rear and French & Hecht round-spoke rims front and rear, just as No. 71355 was configured when it arrived at Honsvald Oil Company in Grafton, North Dakota.  The narrow front end of the tricycle-style of No. 71355 would provide our Martin Township farmer with the ability to perform all the field activities on his farm including the cultivation of row crops.

 

However, because No. 71355 was fitted with the optional 24-inch wheels in the rear, the speed of the tractor in every gear was reduced by almost 1/3.  Accordingly, the speeds available to No. 71355 through its four speed transmission were 1.575 mph in first gear, 1.925 mph in second gear, 2.275 mph in third gear and 4.666 mph in the optional fourth gear.

A Heisler step-up transmission mounted on a Farmall model F-20.

 

Because this range of speeds was painfully slow for cultivation and other light duty field work, our Martin Township farmer had agreed to the installation of a supplemental high-speed transmission to No. 71355, as a part of the original purchase contract.  The particular high-speed supplemental transmission installed by the Honsvald Oil Company to No. 71355 was the Model HT-2033 supplemental transmission manufactured by the Heisler Company of Hudson, Iowa.  (Ibid.)  The Model HT-2033 supplemental transmission added some very important working speeds back to the tractor that had been taken away by the 24 inch wheels.  These were 3.654 mph in high range of first gear, 4.46 mph in high range of second gear, 5.25 mph in high range of third gear.  Additionally, the new Heisler transmission added a road gear of 11.28168 mph to the F-20 for fast transport down the road when needed.  To be able to use No. 71355 for the most important of summer field work tasks, i.e. cultivation of the row crops, our Martin Township farmer had included the purchase of a Model 229 two-row mounted cultivator as part of the same sales contract with Honsvald.  Additionally, as noted previously, the purchase contract with Honsvald Oil Company also included the purchase of a new Model 12 two-row potato digger.

This advertising photo for the new Model 12 two-row potato digger shows that when the F-20 tractor is fitted with 24 inch wheels in the rear the tractor can pull the two-row potato digger. This convinced our Martin Township farmer to include a Model 12 two-row potato digger as a part of the purchase package with No. 71355.

 

Throughout most of January and early February, 1937, there had been accumulations of ten to twelve inches of snow on the ground.  However, unseasonably warm temperatures in early March melted the snow entirely by the middle of the month.  Now our Martin Township farmer had to wait for the soil to dry out and warm up.

Our Martin Township farmer knew of the old “rule” which stated that potatoes should be planted each year on Good Friday of the Easter holidays.  However, like most such rules, our Martin Township farmer knew that this rule did not apply to the “far north” of the Midwest where Grafton, North Dakota was located.  Most years in Walsh County, the last heavy frost in the spring occurred in early May.  Furthermore, he suspected that the old rule referred to potatoes planted in gardens in “sheltered” areas around the homestead.  He knew that the soil out in the open fields took a little longer to warm up in the spring than did the soil in the protected areas around the house.

In the spring of 1937, our Martin Township farmer was able to use the same Little Genius No. 8 two-bottom plow with 14 inch bottoms with No. 71355, which he had used the previous autumn with his old Model 10-20 tractor, to finish the plowing of his fields.

 

April, 1937 was slightly warmer than normal and so was early May.  The last cold night that even approached a killing frost occurred in mid-April.  Furthermore, the gentle rains that occurred throughout April and May helped warm the soil.  These springtime rains dried quickly in the light soil of his farm and did not unduly delay the field work because of wet conditions.  Accordingly, our Martin Township farmer got into the fields in early May of 1937.   He put the bright, red No. 71355 to work preparing seed bed.  Both the spring wheat and oats could germinate in soil as cool as 37°F while seed potatoes required a temperature of 42°F.  Therefore, our Martin Township farmer and his neighbors usually sowed the spring wheat and the oats before planting the potatoes.  By contrast, corn required a soil temperature of 50°F for planting.  Accordingly, corn was planted only after the potatoes.

Cutting the seed potatoes into pieces, by hand, so thatevery piece included at least two “eyes,” was a wintertime activity when potato plots were small. The pieces would then be placed in sacks to await springtime planting. Meanwhile the cut edge of the potato piece would “cure” to prevent rot. The sacks of potato pieces would have to be stored in the cellar of the house; warm enough to keep them from freezing and yet cool enough to retard early sprouting of the eyes of the potato pieces.

 

Cutting the seed potatoes into pieces ready for the potato planter was a job that employed the whole family and it was an ambitious job to be conducted each spring as planting time arrived.  The average potato might weigh 8 to 12 ounces.  After cutting the potatoes into pieces ready for planting, each piece would weigh about 2.5 oz to 3.75 oz.  In the past, potato growers and their families would cut all the potatoes by hand with a knife.  Our Martin Township farmer remembered that even as a small child, he helped his parents with this daunting task of cutting the potatoes for planting.  His mother would admonish him to be careful to leave two or three “eyes” on each piece of potato he cut.  “Don’t make dummies,” she said, referring to potato pieces which had no eyes.  The eyes of the potato were the locations on the potato where the spouts of the new plant would begin to form once the potato was underground.  Leaving two or more eyes on a seed potato piece would be extra insurance that the seed potato piece would still sprout and grow even if one eye failed to sprout.  Our Martin Township farmer’s mother used to joke with him as a child and say that the potato piece needed two eyes to see which way to grow.

Pre-sprouting of the seed potatoes reveals the locations of the “eyes” of the potatoes.

 

Once cut, the seed potato pieces would be placed in a sack and sacks full of potato segments would be placed in the root cellar where the potato pieces would be kept warm enough to not freeze in the winter weather and would be kept cool enough not start sprouting.  Additionally, the cut sides of the potato pieces would “cure” or “heal over” and the potato piece would be protected from rotting.

Seed potatoes laid out on a tray with holes in the tray. Air will circulate around all sides and edges of the potato pieces and heal over the cut surfaces of the potato pieces to prevent them from rotting,

 

He remembered that cutting seed potatoes by hand was a long and arduous task in the spring because the family would have to cut enough potatoes to plant 11,600 pieces for every acre of land they intended to plant to potatoes.  This meant the family would have to cut enough pieces to fill as many as 14 sacks of potato sections for each acre of potatoes they wished to plant.  Currently for the 30 acre field that our Martin Township farmer wished to plant to potatoes, he needed 420 sacks full of seed potato pieces.  Cutting this many seed potatoes would have been impossible for the family alone without hiring on extra help.  However, a relatively recent and ingenious invention made in the 1920s by a local boy, greatly reduced the hand labor of cutting the potatoes into sections in the spring.

g George W. French’s mechanical seed potato cutter dating from the rime of its invention in the 1920’s.  The mechanical cutting of seed potatoes into pieces ready for planting, greatly speeded the process of preparing for spring time planting, 

 

During the 1920s, George W. French, from rural Grafton, North Dakota, invented a mechanical potato cutter which would cut small potatoes into two pieces and large potatoes into six pieces.  (Lynda Kenney, The Past is Never Far Away: A History of the Red River Valley Potato Industry [Potato Growers Association Press: East Grand Forks, Minn., 1995] p. 123.)  The French potato “sizer and cutter” was a new invention that greatly reduced the amount of time that was taken up cutting potatoes for planting.  French’s potato cutter also “sized” the potatoes for planting with a mechanical potato planter.  Mechanical potato planters worked much more smoothly when the seed potato pieces were cut into relatively uniform chunks.  The French potato sizer and cutter did a good job at creating uniform chunks for planting in the field.

If seed potato pieces are stored in too warm of an environment, they will begin to sprout and grow before they be planted in the Spring.

 

Although the French mechanical potato cutter could not assure that every seed potato piece that was produced by the machine would have an eye, the process of cutting a great number of seed potato pieces for planting was simplified.  Thus, some “dummies” or “duds” would escape the careful attention of the potato farmer and his family in  the automatic cutting process and make it into the sacks of potato pieces that would be stored in the root cellar and may be planted in the field.  other seed potato pieces and would be planted even though they would not grow.  When the potatoes would sprout up through the ground there would  be a “gap” or  a blank in the row where the dummy had been planted.  Our Martin Township farmer began to expect and to tolerate these occasional gaps in the rows of growing potatoes.  He surely did not want to go back to hand-cutting the potatoes with a knife, just to eliminate all dummies.

 

The modern industrial sized and computerized seed potato cutter grew out of Henry  French’s simple mechanical seed potato cutter invented in the 1920s. and can produce seed potato segments of what-ever size is desired and will produce many less “dummies” than non- The computerized capability of this cutter will assure that there are many less “dummies.”

Continue reading Potato Farming in North Dakota with a 1937 Famall F-20 (Part 2)

Potato Farming in North Dakota with a 1937 F-20 (Part I)

Statistics recorded with Counterize - Version 3.1.4

Potato Farming in No. Dakota: The 1937 F-20    

by

Brian Wayne Wells

(As published in the July/August 2008 issue of

Belt Pulley Magazine)

Grafton Potato Growers Inc.: A major potato buyer of potaotes in Grafton, the county seat of Walsh County, North Dakota.

     It began like so many other purchases of antique farm machinery.  The late Wayne A. Wells purchased a Farmall Model F-20 at the 1992 LeSueur County Pioneer Power Swap Meet.  Wayne paid for the tractor by means of a check.  Wayne had the habit of making virtually all purchase transactions by means of a check—a habit that has been inherited and is carried on to further extremes by his son, the current author.  Future events would prove how extremely fortunate it was that the purchase was made by means of a check.

No. 71355 powering the Wallace Bauleke/Paul Meyer 22 inch McCormick-Deering thresher at the 1993 LeSueur Pioneer Power Show.. This web-site contains an independent article on the history of the Wallace Bauleke/Paul Meyer thresher.

This particular F-20 was missing its serial number tag.  However, the serial number imprinted on the frame of the tractor was 71355.  The tractor was fitted with two 6.00 X 16 inch car tires mounted on IHC cast iron drop-center, or demountable, rims in the front.  One of the first improvements to the tractor was to replace these old car tires with two new 5.50 X 16 inch tri-rib tires.  No. 71355 was also fitted with 13 X 36” rubber tires mounted on IHC cast-iron demountable rims in the rear.  The rear tires were in extremely bad shape and in April of 1993 they too were replaced with brand new tires.

No. 71355, having already been painted but still with the old rear tires,,undergoes an overhaul during Christmas of 1992.

 

No. 71355 was only the second tractor to be restored by Wayne Wells, (the first tractor to be restored was the 1945 Farmall B bearing the serial number 130161, which is mentioned in the article called “Farmall B: Second Tractor on the Farm, but First in the Heart” contained in the November/December 1993 issue of Belt Pulley), both Wayne and his two sons, Mark and the current author, were anxious to parade the tractor at the LeSueur County Pioneer Power Show to be held on the last weekend in August 1992.  Accordingly, No. 71355 was painted prior to any overhaul of the engine being performed.  (Indeed, a very “smoky” but painted, No. 71355 can be seen being driven by Mark Wells in the parade at the 1992 LeSueur Show in the second hour portion of Disc/Tape No. 1 of the International Harvester Promotional Movie collection.

No. 71355 was painted in August of 1993 an was overhauled during Christmas of 1993.

 

The current author can be seen in the same movie driving the same 1945 Farmall B mentioned above, just ahead of No. 71355 in the parade.)  The badly needed engine overhaul of No. 71355 was conducted in large part over Christmas of 1992.  (Some of this work performed on No. 71355 over that Christmas was filmed and can be seen on the second hour portion of Disc/Tape No. 2 of the International Harvester Promotional Movies.)  In April of 1993, No. 71355 was pulled and started for the first time following the engine overhaul.  (This procedure of pulling No. 71355 with the 1945 Farmall B in April of 1993 can be seen on the second hour portion of Disc/Tape #5 of the International Harvester Promotional movie collection.)

While No. 71355 was the second tractor restored by Wayne A. Wells, the 1945 Farmall Model B bearing the serial number 130161 was his first restoration project.

 

As the restoration of No. 71355 proceeded, history of the tractor was examined.  Nothing of the actual history of No. 71355 was known.  Consequently, the history of the tractor was a topic of speculation.  Ordinarily a telephone call to the seller of the tractor would have been the starting point for the research into the history of the tractor.  However, time had passed since the purchase of No. 71355 in April of 1992 and the canceled check bearing the name of the seller of No. 71355 was placed away in storage with the financial papers of the Wells family.  With the check used for payment on the tractor not readily at hand, the seller’s name was not available and not even a beginning could be made as to researching the actual history of the tractor.  Only the features of the tractor itself could be used as clues as to the tractor’s past.  Luckily, the particular and unique features of No. 71355, reveal a good deal about the tractor.

The tricycle design of farm tractors was introduced by the International Harvester Company in 1924 with the “Farmall” tractor. Soon nearly all farm tractor manufcturers around the world were copying the tricycle design for their “row crop” tractors.

 

First and foremost was the “tricycle type” design of No. 71355.  The tricycle design positioned the front wheels of the tractor close together.  This configuration allowed the tractor to work in crops which were planted in rows as narrow 30 inches apart.  As a tricycle “row crop” tractor, both front wheels of the tractor were attached to a single bolster.  Thus, both front wheels shared a single pivot point.  This type of steering is called “fifth wheel” type of steering and is different than the “automotive type” steering found in “standard” or “four-wheel” designed tractors in which each wheel has its own pivot point located at the “journal” for that particular wheel.  The fifth wheel type of steering allowed the tricycle designed tractor to turn much more sharply than the automotive type steering.  Thus, the tricycle design and the ability to turn very sharp corners made No. 71355 ideally suited for row crop farm work.

The single pivot point on the front of the Farmall tractor was the steering bolster on the tractor located in front of the radiator. The particular “open” (non-enclosed) gear and sector plate style steering on the early Farmalls (now called the Farmall Regular) made the Regular somewhat dangerous to drive over rough or rocky ground. After 1932, the Regular was modified and improved and became the Farmall Model F-20 tractor. One of the main improvements made to the Farmall Regular in 1932 was the replacement of the open gear and sector plate type steering with a “worm gear” type of steering in the new F-20. As a result the Farmall Model F-20 tractor was much easier to steer than the Regular.

 

A second feature of No. 71355 that provided a clue as to its history was the optional high-speed road gear that had been installed in the standard transmission of No. 71355.  Standard equipment on the Farmall Model F-20 was a four-speed transmission with speeds of 2⅜ miles per hour (mph) in first gear, 2¾ mph in second gear, 3¼ mph in the standard third gear and 3¾ in fourth gear.  (See the tractor specifications of the F-20 in the IHC Data Book #1: 1900 to 1940 by Alan C. King at page 24.)  However, in the transmission of No. 71355, the standard equipment 3¼ mph third gear had been replaced by the optional 28-tooth gear which resulted in a speed of 7.07 mph.  (See the 28-tooth “high speed” sliding gear listed as part No. 20700D on page 124 of the F-20 Parts Catalog—TC-13-A.)

The 28-tooth sliding gear that would replace 3rd gear in the Farmall Model F-20 transmission to allow the tractor to have a 7.07 mph road speed.

 

Consequently, this optional “3rd gear” became the “new road gear” and really was the new “4th gear.”  This was a factory installed option on No. 71355, as evidenced by the fact that the numbers embossed on the base at the shifter lever of the tractor, which reflected the shifting pattern for the gear shift lever, actually had the “3” and the “4” reversed to accurately portray the new gear shift pattern given the installation of this new optional road gear.  (Oscar H. Will and Todd Markle, Collector’s Originality Guide: Farmall Regular and F-Series [Voyaguer Press: St. Paul, Minnesota, 2007] p. 68.)

Mark Wells discs the newly plowed fields on the grounds of the LeSueur Pioneer Power Show with No. 71355 in August 1994. Loss of the traditional 3rd gear meant a loss of the 3-3/4 mph speed .on No. 71355 meant the loss of a light field work speed.

 

Installation of this optional road gear was made available only on those F-20s which were fitted with rubber tires.  (Ibid. p. 72.)  Accordingly, it was determined that No. 71355, rolled off the assembly line at the Farmall Works in Rock Island, Illinois, fitted with factory-installed rubber tires.  However, when No. 71355 was manufactured in the second week of December, 1936, the tractor could not have been fitted with the same 36 inch cast-iron wheels with demountable rims that are now mounted on the rear of tractor.  Only in March of 1937, (beginning with the particular F-20 with the serial number 79522) did F-20 tractors begin to be fitted with these International Harvester-made cast-iron demountable rear wheels and rims for rubber tires.  (See the F-20 Parts Book page 207.)  Prior to March of 1937, IHC relied on an outsource contract, they had signed with the French and Hecht Company of Davenport, Iowa, to supply all the rear wheels for all their rubber-tired tractors.

The French & Hecht Company factory located in Davenport, Iowa, where the round spoke wheel rims were manufactured.

 

Likewise, the IHC cast-iron demountable drop-center rims, currently, mounted on the front wheels of No. 71355, could not have been mounted on the tractor when the tractor was first built and sold.  IHC began using their own demountable drop center rims for rubber tires on the front wheels only in January of 1938 beginning with the particular F-20 tractors bearing the serial number 109127.  (See page 175 of the F-20 parts book.)

Factory Installation of the high speed road gear in the transmission of No. 71355 indicates that rubbers tires were also installed on the rear of the tractor. Still the IHC-made drop-center rear wheels that are now mounted on rear of No. 71355 could not have been factory installed on the tractor.

 

 

Prior to that time, IHC again relied on its contract with the French and Hecht Company to supply round-spoke rims for all F-20 tractors fitted with 5.50 X 16” rubber tires in the front.  (A French and Hecht round-spoke rim is pictured on page 174 of the F-20 parts book.)  Accordingly, when No. 71355 rolled out of the Farmall Works in Rock Island, Illinois, the tractor did so with rubber tires mounted on French and Hecht round-spoke wheel rims on the front as well as the rear.

A Farmall Model F-20 is delivered to a dealership with smaller 28 inch French & Hecht “round spoke” wheels in the rear, but disc-type wheels in the front.

 

Some time after No. 71355 was initially purchased, the tractor was fitted with an auxiliary transmission manufactured by the Heisler Manufacturing Company of Hudson, Iowa.  This auxiliary transmission was located on the power train of the tractor in the open space between the clutch housing on the engine and the standard transmission.  The Heisler auxiliary transmission provided a high range to all the standard speeds of the transmission—in fact doubling the number of speeds available to the tractor.

A Heisler model H-9 series “step-up” transhission installed on a Farmall F-20 tractor. The tag on the Heisler unit appears to indicate that the gearing of the Heisler unit will increase the speed of the tractor by 2.3 times normal speed in each gear.

 

The Heisler Manufacturing Company made three different models of auxiliary transmissions for the Farmall F-20.  Model number HT-2033 auxiliary transmission would increase the speed of the F-20 tractor by a factor of 2.32 to 1 because of the gear ratio of the auxiliary transmission.  Heisler model number HT-2034 featured a gear ratio of 2.1 to 1 and Heisler model number HT-2035 featured a gear ratio of 1.99 to 1.  The reason for the Heisler Company offering the three different auxiliary transmissions was that the rubber-tired F-20 was offered to the public with different sizes of rubber tires for the rear.  The Heisler Company knew that the size of the rear tires would greatly alter the speeds of any tractor.  The particular model of Heisler auxiliary transmission added to No. 71355 was model HT-2033 with the 2.32 to 1 gear ratio.  The addition of the Heisler Model HT-2033 supplemental transmission to No. 71355, with its optional high speed road gear and with 36” rubber tires in the rear, would have added high range speeds of 5.22 mph in first gear, 6.38 mph in second gear, 7.59 in third gear and 16.4024 mph in fourth gear.  These were hardly necessary or even desirable speeds for field work.  Indeed, they all seemed to be road speeds.  Indeed, the Heisler Company specifically warns against installation of an auxiliary transmission on any F-20 tractor which already has already been fitted with the optional high-speed road gear in the standard transmission.   Continue reading Potato Farming in North Dakota with a 1937 F-20 (Part I)

Raising Poland China Hogs in Waseca County, Minnesota (Part 2)

Raising Poland China Hogs (Part II): The 1936 Farmall Model F-30

by

Brian Wayne Wells

(As published in the September/October 2008 issue of

Belt Pulley Magazine)

            As noted previously, Waseca County is located in the flat plains of southern Minnesota.  (See the article called “Raising Poland China Hogs in Waseca County” in the May-June 2008 issue of Belt Pulley magazine.)  The soil of these plains is a dark, rich, gumbo-type of soil.  This type of soil is perfect for raising corn.  One of the lesser populated townships in Waseca County is Byron Township.  Byron Township is located on the southern boundary of Waseca County.   As noted previously, one particular farmer in Byron Township was celebrating the Christmas holidays of 1935 with his parents and other family members when the great Christmas Eve snow storm of 1935 struck.  The storm isolated the family on the farm for a number of days before the roads were cleared enough for travel off the farm.  (Ibid.)

On this hog farm, Christmas was an important time for the farming operation because it was “farrowing time” for the registered purebred Poland China sows that were owned by our Byron Township farmer.  He was pleased to see that each of his sows had given birth to a large litter of baby pigs during this farrowing season.  Furthermore, the sows and baby pigs all seemed to be adjusting well to each other.  The Poland China sow is known to be a good mother to her pigs, but, as noted in the previous article, our Byron Township farmer had made the decision last summer (1935) to enlarge his breeding stock by adding four new bred gilts.  He now had twelve sows and twelve litters of baby pigs rather than a mere eight litters of previous years.  The four new gilts were “first time mothers.”  Our Byron Township farmer always worried about the emotional reaction of first-time mothers to their first litter of pigs, but now in the weeks following the holidays, he could see that even the young gilts were getting along well with their baby pigs.

The farrowing season kept our Byron Township farmer busy with chores in the hog house.  The whole hog house was divided into separate pens as each of the  twelve “families” had their own pen.  Each sow had to be fed and watered in her own pen twice a day.  As the baby pigs became larger and were able to get around relatively independently, there was less chance of them being, accidentally, laid on and crushed to death by their mother or by the other large sows.  Accordingly, the partitions separating each mother and their litters could be removed and the sows and their litters could be allowed to interact with each other.  Feeding and watering would be more communal and could be simplified to take less time.  Nonetheless, the “hog house chores” of feeding and watering remained a twice-a-day activity.

Having enlarged his breeding stock by 50%, our Byron Township farmer would now have 50% more feeder pigs to raise than in previous years.  Thus, our Byron Township farmer knew that he would be busier this year than ever before—especially, once the springtime field work began.  Currently, our Byron Township farmer had two Farmall Regular tractors available to him on his farm.  Although one of the Farmall Regulars actually belonged to his father, who lived on a separate farm building site located about a ½ mile away.  His father still regularly helped with the day to day farming activities.  They had purchased both of these Farmall Regulars in 1928 with the intent of speeding up their summertime work of cultivating the corn.  Now when they went to the field in the summer with the cultivators mounted on both tractors, they could cover a lot of ground in a short time.  However, they had purchased the two tractors seven years ago.  His father was not as able to do manual labor around the farm as he had in the past.  After all, his father had actually retired and sold the farm to our Byron Township farmer seven years ago.

This last August at the 1935 Minnesota State Fair, while the family was making their annual trip to show the pigs at that fair, our Byron Township farmer had been intrigued by what he saw at the large International Harvester Company exhibit on “Machinery Hill” on the fairgrounds.  The 1935 State Fair was his first real chance to see the full line of tractors that the International Harvester Company was now offering to the farming public.  In July of 1931, International Harvester had introduced a new larger Farmall tractor (Oscar H. Will & Todd Markle, Collector’s Originality Guide: Farmall Regular and F-Series [Voyaguer Press: St. Paul, Minnesota, 2007] p. 51).  When tested at the University of Nebraska from October 9 through October 23, 1931, the new larger Farmall was shown to deliver 20.27 horsepower (hp.) to the drawbar and 30.29 hp. to the belt pulley.  Because of its belt horsepower rating, the tractor became known as the Farmall 30, or the F-30 for short.  Continue reading Raising Poland China Hogs in Waseca County, Minnesota (Part 2)

Raising Poland China Hogs in Waseca County, Minnesota

Statistics recorded with Counterize - Version 3.1.4

Raising Poland China Hogs in Waseca County, Minnesota (Part I)

by

Brian Wayne Wells

(As published in the May/June 2008 issue of

Belt Pulley Magazine)

A map of Minnesota showing the location of Waseca County.

            The soil of Waseca County is black, rich, fertile and flat—very flat.  The deciduous forests of southern Wisconsin, called the “big woods,” extended into southern Minnesota up to a point about thirty-miles to the east of Waseca County.  Everything to the west of the big woods, including Waseca County flat prairie land.  Although the land is flat as a tabletop just like the Great Plains further the west, the climate of Waseca County is not at all dry like the climate of the Great Plains.  Indeed, in a normal year, Waseca County will be bathed with 34.7 inches of rainfall.  (From the Waseca page of the city-data.com web site on the Internet.)  The combination of very rich soil and abundant moisture makes Waseca County ideal for raising corn.  A healthy crop of corn requires about 22 inches of rain per year.  As a result of this abundant rainfall and rich soil, Waseca County traditionally produces corn yields that nearly double the national average yield per acre.  In 1921, for example, when the national yield per acre of corn was 27.8 bushels per acre, the yield in Waseca County was 46 bushels per acre.  (From the National Agricultural Statistics Service [N.A.S.S.] webpage of the United States Department of Agriculture [U.S.D.A.] website.)        The three townships along the southern boundary of Waseca County from east to west are New Richland Township, Byron Township and Vivian Township.  A person driving down any dirt road the within these townships in 1935, would see corn fields on both sides of the road, broken only by the driveways leading to the homesteads of the people living along that particular road.  For nearly every mile that a person traveled down that country road, the person would find another crossroad.  The crossroads usually indicated the boundary of another section of land.  Moving ahead into the next section of land the person would once again find corn planted in the fields on both sides of the road.  The only variation in this pattern was the fields of oats and hay.  Corn was the primary cash crop of farmers of Waseca County.  Oats and hay were not cash crops.  Almost all oats and hay raised on the average farm in 1935 was used on the farm—primarily to feed the horses that were needed for the field work in the summer.

Relying only on corn as a cash crop was risky.  If the corn market went “soft” and corn prices fell, the farmer would lose money.  Traditionally, diversification was the method used by farmers to avoid, or mitigate, the effects of “soft markets.”  This was usually accomplished by decreasing the amount of corn raised on the arable land of the average farm and devoting that land to a second cash crop.  Traditionally, wheat was raised as a secondary cash crop.  However, the amount of acreage devoted to wheat each year had been declining in Waseca County for a long time.  Currently, the amount of wheat raised each year was only about a quarter of the amount of corn raised in Waseca County.  The most popular method of diversification used on the farms of Waseca County was to raise pigs.  The rationale was that when corn prices fell, the farmer could feed the corn to pigs on their farm.  Then they could sell the pigs.  Provided that pork prices did not decline together with the corn prices, the farmer might still be able to make a profit despite the low corn prices.

A township map of Waseca County, Minnesota, showing the location of Byron Township in yellow in the bottom row of Townships.

 

One particular farmer in Byron Township in south central Waseca County, had this principle of diversification imprinted on his mind for most of his young life.  Originally, his grandfather had “homesteaded” this 160-acre “home” farm.  Our current Byron Township farmer’s father had taken over the farming operation from his parents in 1895.  Like their neighbors, they needed to devote 35 acres to pasture for their small herd of dairy cows, 30-35 acres to hay and 35 acres to oats.  The balance of the arable land, approximately 45 to 50 acres was devoted to corn.  The crops were rotated from field to field each year to avoid depleting the soil with any one crop.

This is an arieal view of a farm that looks much like the farm of our Byron Township farmer.

 

A portion of the corn used on this farm had traditionally been used for raising and fattening pgs for market.  However, the balance of the corn not needed for feed was sold to the grain elevator in New Richland in the winter of each year.  The income derived from the sale of the corn crop made up a substantial portion of the cash income of the farming operation, milking the cows and selling cream to the local creamery in New Richland provided the family with a regular income on a year-around basis.  Thus, the dairy operation represented another form of diversification of the farm income.  However, on our Byron Township farmer’s farm, it had always been the pig operation that provided the real diversification and alternate cash income when corn prices were low.  All through the 1920s, the price of corn, cycled regularly from an average annual low of $.75 per bushel to an average annual high of $1.19 per bushel.  Likewise, during the 1920’s, the wholesale price of hogs had cycled on an annual basis from an average low of $8.29 per hundred weight up to $11.21 per hundred weight.

Generally, the corn in the corn crib was shelled out in February or March each year.  After filling the granaries to feed the pigs for the rest of the year, the remainder of the shelled corn could be taken to the grain elevator in New Richland straight from the sheller and sold.  This provided the family with the major portion of their winter income on the farm.  The feeder pigs generally reached their market weight in July or August and, thus, could be sold at that time.  This provided the family with the major income in the summer.  This was the pattern of life that our Byron Township farmer knew as he grew up on his parent’s farm.

Gradually, over the years, as our Byron Township farmer grew up into an adult, his father relinquished more and more of the daily decision making regarding the farming operation to him.  It became a true partnership.  Basically, our Byron Township farmer agreed with his father on the course of the farming operation.  His father had been raising pigs for years.  Our Byron Township farmer had always been interested in the hogs.  However, the hog operation took on a whole new importance on his mind when he began showing pigs at the Waseca County Fair.

His very first pig that he had raised and shown at the county fair had been one of the newborn pigs from one of the litters born to his father’s crossbred sows.  That first pig was memorable because the pig had won a blue ribbon at the Fair that year.  Winning the blue ribbon had been more the result of more luck than of skill on his part.  Still he had been hooked.  That blue ribbon perked his interest at an early age to find out all he could about the most profitable ways of raising pigs.

Over their lives, hogs gain 3000% of their own birth weight.  (Sara Rath, The Complete Pig [Voyageur Press: Stillwater, Minn., 2000] p. 78.)  Furthermore, only a short amount of time required for raising the baby pigs for market—generally five to seven months.  Combining this rapid weight gain with the short gestation period of three months, three weeks and three days from breeding until “farrowing”  (giving birth), made the  hog operation on the average farm the most profitable part of the farming operation.  (Kelly Klober, Storey’s Guide to Raising Pigs.[Storey Pub. Co.: North Adams, Mass., 1997] p. 22.)  This rapid turn-around in time from initial investment until profit in hogs compared with the nine month gestation period in cattle and then the nearly two years needed to bring feeder cattle up to their market weight.  (See the article called “A 1931 Farmall at Work in Mower County, Minnesota” in the March/April 2008 issue of Belt Pulley magazine for a description of a small beef operation on a diversified Midwestern farm.)  Our Byron Township farmer and his father both knew that this very rapid turn-around combined with fact that an average sow would farrow a litter usually contained ten baby pigs could generate a great deal of income for the farming operation and  be a real “mortgage lifter.”  It all depended on getting the baby pigs successfully raised to their full market weight.  Proper management was the key.  It all started with the mother sow.  Continue reading Raising Poland China Hogs in Waseca County, Minnesota

A 1931 Farmall Regular at Work

Statistics recorded with Counterize - Version 3.1.4

A 1931 Farmall Regular at Work in Mower County, Minnesota            by Brian Wayne Wells

(As published in the March/April 2008 issue of

Belt Pulley Magazine)

A 1929 Jnternational Harvester Cpmpany’s ,Farmall Regular, the first tricycle-style row-crop tractor.

 

In the years before the First World War, the internal combustion tractor had shown great promise as an efficient power source for use on farms.  Immediately following the First World War, that promise came into fruition as internal combustion powered tractors replacing work horses in the most arduous tasks on the average farm.  During the 1920s, many farmers were performing their heaviest field work; e.g. plowing and discing, with farm tractors.  However, one field task avoided mechanization and still required work horses.  That was the cultivation of row crops—especially corn.  The conventional “four-wheel” or “standard” style farm tractor was not suited, nor had it been designed, for to the task of cultivating row crops.

The “standard” or “four-wheel” tractor, like the popular International Harvester Model 10-20 tractor pictured here, was the only style of tractor produced by the International Harvester Company and all other farm tractor manufacturers prior to 1924.

 

Ever since 1915, the International Harvester Company had been experimenting with various proto-types and configurations of a motorized self-propelled cultivator.  However, as important as a cultivating machine would be to the average family farm, a separate motorized implement, which would be used only for the task of cultivating row crops in the summer time and would be stored unused on the farm for the remainder of the year, was not deemed the most efficient use of the limited resources of the average family farming operation.  Eventually, the minds the engineers at International Harvester, crystallized around the concept of redesigning the conventional farm tractor into a power source on which a cultivator could be mounted during the summer growing season and from which the cultivator could be removed once the cultivation of row crops was finished.  Such a redesigned farm tractor could be used for all tasks on the average family farm on a year-around basis and could replace the horse entirely on the average family farm.  Because such a redesigned tractor held the promise of performing all tasks on the farm, the International Harvester Company began calling this newly redesigned tractor the “Farmall” tractor.

The International Harvester Motor Cultivator at work in the corn field.

 

The conventional “standard” or “four wheel” style tractor had both front wheels mounted wide apart.  Just like an automobile, the front wheels were spaced so that the rear wheels of the conventional tractor traveled in the same paths as the front wheels of the tractor.  Additionally, the standard four wheel tractor had an “automotive style” type of steering in which each front wheel pivoted on its own bolster.  Thus, the standard tractor could turn only as sharply as a car.  On the other hand, the front wheels of the Farmall tractor were mounted close together in a narrow front end configuration.  Both of the front wheels of the Farmall were mounted on the same bolster or pivot point which allowed the front wheels of the Farmall to be turned to a 90° angle from the straight forward line of the tractor.  This type of steering is called “fifth-wheel” steering.  Both because of the narrow front end and the fifth wheel type of steering, the Farmall tractor design has been called the “tricycle design.”  The tricycle design of the Farmall tractor was ideal for the cultivation of row crops.

Prior to the introduction of the tricycle-style  Farmall Regular in 1924, the International Harvester Company made and sold  only “standard” or “four-wheel” tractors like the Model 15-30 shown above. Note the front wheels are turning in an automobile-like style.

 

Thus, in 1924, after nine years of experimentation, the new Farmall went into production at the old Tractor Works located at 2600 West 31st Boulevard (the corner of 24th and Western Avenue) in Chicago, Illinois, beginning with Farmall tractor bearing the Serial Number 0501.  Only 199 Farmalls were produced in 1924.  However, in 1925, the Farmall’s first full year in production, another 837 were manufactured.  Only in 1926, did production of the Farmall hit its stride, with 4,418 Farmalls being made and sold in that year.  The suggested retail price of these new Farmalls was $950.00.  However, in October of 1926, production of the Farmall was relocated to a new factory—the Farmall Works located in Rock Island, Illinois.

An aerial view of the International Harvester Company’s “Farmall Works” in Rock Island, Illinois.

 

Introduction of the innovative new Farmall tractor coincided with some other industrial innovations—large and small.  Some of these innovations were incorporated into the design of the Farmall, even after production of the Farmall had already begun.  One such industrial innovation was rather small in size but proved to be a very important watershed in industrial and farm machine lubrication.  This was the development of the grease gun and the small grease fitting called the “zerk.”  This small innovation came to a great number of farms of North America, “piggy-backed” on the Farmall tractor.  The grease zerk was destined to change a great number of practices on the farm.

Oskar Zerk was the inventor of a number of common products, but his most important invention was tiny and simple grease zerk which came to be used every where on machinery and in industry.

 

The word “zerk” was derived from its inventor—Oscar Ulysses Zerk.  Emmigrating from the Magar region of the Hungarian part of the Austro-Hungarian Empire, Oscar Zerk came to the United States and settled in Kenosha, Wisconsin.  There he developed the famous little grease fitting that still bears his name.  It was the development of the zerk and the parallel development of the grease gun by young Arthur Gulborg that led to a small revolution in lubrication of bearings, shafts and other moving machine parts.  Continue reading A 1931 Farmall Regular at Work

Tobacco Farming with a Farmall Super C

                  Tobacco Farming in West Virginia

with the Farmall Super C

by

Brian Wayne Wells

As Published in the September/October2005 issue of

Belt Pulley Magazine

The restored Raymond and Edith Thompson Farmall Model Super C at the 2016 LeSueur Pioneer Power Show.

Ever since the Surgeon General’s report of January 11, 1964, linking smoking of tobacco with lung cancer, smoking of cigarettes has been on the decline. Today, with only 22.8% of the public of the United State still engaging in the habit of smoking, it seems hard to imagine a time when the majority of the American public smoked. In 1949, 44-47% of the nation’s total population (50% of all men and 33% of all women) smoked. Cigarette manufacturing was a large and lucrative business. Supplying that large and lucrative business with at least some of the raw product—tobacco plants—were North American farmers, particularly the farmers of the southeastern part of the United States. West Virginia does not produce much tobacco. Currently West Virginia is 16th among all the states in the production of tobacco. In 1953, West Virginia ranked 15th out of the 21 tobacco growing states, ranking just ahead of Missouri in tobacco production.

Despite the drought in 1953, West Virginia produced only 4,542,000 pounds of the light burley type of tobacco out of the 2 billion pounds of tobacco produced in the United States that year. Lincoln County in West Virginia produced 31.4% of the State’s total production of tobacco with 1,426,000 pounds grown that year. Hamlin is the county seat of Lincoln County. State Road #3 runs through the center of Hamlin from west to east. About 1½ miles east of Hamlin, State Road #3 intersects with State Road #34. About a mile north of this intersection on S.R. #34 is Harvey’s Creek Road. Living on the first farm on the left down Harvey’s Creek Road in 1953 was Raymond and Edyth Marie (Byrd) Thompson. Raymond worked off the farm and was employed by the Tennessee Gas Company. However, ever since they purchased their 85 acre farm on Harvey’s Creek Road from J.A Pack in January of 1944, Raymond and Edyth had dreamed of making their living from their own land. Much of their farm could not be cultivated because of the rough terrain. Thus, they made the rough terrain profitable by making it a permanent pasture for the Hereford beef cattle they raised.

Given the terrain of the State, beef farming is a natural choice for most farming operations in West Virginia. Indeed beef farming does constitute a great deal of the farming conducted in the State of West Virginia. Within the West Virginia beef cattle industry, Hereford cattle are predominant. Additionally, a surprising number of Hereford farmers in West Virginia have become interested in improving blood lines of their Hereford cattle. Toward this end a significant portion of West Virginia beef farmers raised “purebred” Hereford beef cattle. These purebred Hereford farmers will generally register the best cows and bulls in their herds with the American Hereford Association in Kansas City, Missouri. Native West Virginian B.C. (Bud) Snidow, now retired and living in Mission, Kansas, worked for the American Hereford Association from 1951 until 1983. Born in Princeton, West Virginian, Bud Snidow, throughout his career, naturally kept track of the registered Hereford beef industry in his native state. He noted that following the Second World War there was an increase in the number of registered Hereford cattle in West Virginia. This increased pushed West Virginia to a position of 20th among all states in the number of registered Hereford cattle herds. Raymond did not follow the purebred blood lines of the Hereford breed like some beef farmers, but he did insist on raising only Hereford cattle on his farm. He liked his Hereford cattle.

Because most of their farm was taken up in the hillsides and bluffs which are common to Lincoln County, West Virginia, leaving only a very small quantity of flat bottom land that was arable, Raymond rented two other 15 acre fields from Eb Oxley. Eb Oxley was actually a distant relative of Raymond and Ethyl Thompson. These two 15 acre fields were located about one mile north of Raymond and Edyth’s farm on S.R. #34 just across the county line into Putnam County. On these two fields rented from Eb Oxley, Raymond raised hay and corn every year alternating the crops from one field to the other every other year. On the very small arable acreage of his own farm, located in the bottom of the Harvey’s Creek “hollow” where they lived, Raymond and Edyth raised oats that they needed for the horses and they also set aside 7/10s of an acre for their tobacco allotment, issued by the United States Department of Agriculture. Pursuant to this allotment Raymond and Edyth were permitted to raise up to 7/10s of an acre of tobacco. Like his neighbors, Raymond knew that, despite the small size of the acreage, tobacco could become a major crop on any farm. For this reason, tobacco allotments were highly prized by farmers.

Tobacco raising had been strictly controlled by means of acreage allotments since the 1933 Agricultural Adjustment Act. The original intent of the tobacco acreage allotments was to provide the tobacco farmer with the security of price supports. However, since the end of the Second World War, these price supports had hardly been necessary. The price of tobacco had led all other farm commodities in return for the time and labor invested. Indeed, it was said that the tobacco allotment “paid for many a farm.” As time went by, tobacco allotments added a great deal to the value of a farm. So much so, that some buyers insisted that a particular paragraph be added to the deed of sale of the land they were purchasing which would make specific mention of the transfer of the tobacco allotment with the purchase of the land. (Paragraphs, like these really provided no protection for the buyer of a farm. The Farm Service Agency (F.S.A.) of the United States Department of Agriculture issued acreage allotments, each year, only to the person owning a particular farm that particular year. Any attempted transfer of the acreage allotment not tied to the sale of the farm would not be recognized by the F.S.A. Instead the purchaser of a farm would have to file an application with the F.S.A. each year, to obtain a tobacco allotment for that year.)

For Raymond and Edyth Thompson the growing season of tobacco came in the middle of March every year with a trip to Stone’s Southern States, a feed and seed farm supply store on the west end of Hamlin. Raymond would drive off to Stone’s in his Chevrolet pickup and there he would buy the small packet of certified tobacco seed he needed for his tobacco crop. Returning home after picking up a few other things for of the farm, Raymond opened the seed packet and blended the contents together with some corn meal in a coffee can. The individual tobacco seed is so small that a single teaspoon full will contain a million tobacco seeds. Thus, the certified seed is mixed thoroughly with a small quantity of corn meal to allow the seed to be sown in a uniform manner.

Tobacco seed which is packaged and sold every year is raised by some tobacco farmers. Indeed a little further up Harvey’s Creek Road where the road crosses the county line into Putnam County, was the 100 acre farm of Stanley and Garnet (Painter) Young and their sons. In addition to their own large tobacco allotment in the early 1950s, the Young family had an additional plot of tobacco that they were “letting go to seed.” The flowers on these tobacco plants would not be removed. Instead the flowers were allowed to bloom and the seed pods were allowed to form. In the fall of the year after these tobacco plants had fully ripened, the seed pods would be harvested and sold to the tobacco warehouse in Huntington, West Virginia.

There had been very little snow over the winter of 1952-1953. Although temperatures had been colder than usual in late February, it looked as though March was “coming in like a lamb” with higher than ordinary temperatures. Raymond Thompson burned off a small patch of ground on his farm. This patch was just big enough to be covered by a wooden frame with a large piece of cheesecloth stretched over the wooden frame. After working up this small patch of ground with a garden hoe to form a seed bed, he sowed the corn meal/tobacco seed mixture on the newly worked ground and covered the ground with his “hot house” frame. This frame, which was used every year was made of wooden boards placed edgewise and was nailed together at the corners. This frame was taken down out of storage in the barn. There were some small nails sticking upward out of the frame which would allow a large piece of cheese cloth to be stretched across the frame. The wooden frame and the cheese cloth formed a hot house over the small seed bed where the tobacco seed had been sown. The porous nature of the cheese cloth allowed the sun to shine through to the seed bed and allowed the rain to keep the seed bed moist. However, the heat from the sun was trapped under the cheese cloth and kept the little seed bed warm enough to allow the tobacco to germinate, despite the cold weather and occasional snows of the late winter and early spring . Indeed, Raymond and Ethyl also started a bed of leaf lettuce under the same cheese cloth “hot house” to get an early start on the family garden. Raymond would make daily inspections of the hot house under the cheese cloth. Gradually, he would begin to see the young tobacco sprouts poking up out of the ground under the cheese cloth. After the spouts leafed out and became small seedlings, Raymond would start removing the hot house frame from the seed bed during the daylight hours and cover the bed again at night. This procedure allowed the tobacco seedlings to absorb the direct sunlight during the day and to “harden,” or become accustomed to the warming weather outside the hot house.

Eventually, the weather would be warm enough to allow the hot house frame to be removed altogether. The tobacco seedlings would continue to grow as Raymond began his seasons work on the rest of his farm. He tilled the ground on his farm with his horses to form a proper seedbed. Then, he sowed the oats that he would need for the next year to feed the horses. Next, he planted his corn.

As in years past, he borrowed a wire-check corn planter from a neighbor to plant his corn. The wire-check planter came complete with a roll of wire that was long enough to stretch all the way across any field. This wire contained little wire buttons attached to the wire at intervals of 42 inches. This wire was stretched across the field along the side of the field where the farmer wanted to begin planting corn. The wire was attached to the checking mechanism the located on the side of the planter. As the horses pulled the planter across the field the buttons would slide through the checking mechanism and trip the planter releasing seed into the ground with each tripping action. The result would be that the corn would be planted uniformly in 42 inch spaces along the rows. When the horses and planter reached the end of the field, the wire was temporarily disconnected from the planter. The horses and planter were then turned around to line up for the next two rows of corn to be planted along side the first two rows just completed. The wire was then attached to the checking mechanism on the opposite side of the planter. As the planter moves across the field again, the wire passing through the checking mechanism, again, tripped the planter to release seed corn to the ground at 42 inch intervals and the seed placement in these next two rows exactly matched the seed placement in the first two rows just planted.Thus, the corn would be in a grid of 42 inch rows and with “hills” of corn located 42 inches apart along each row. This would allow the corn to be “cross-cultivated” as well as cultivated lengthwise. This way, the weeds within the rows between the hills of corn could also be controlled.

Next it was time to transplant his tobacco to the field. Because, tobacco plants remove a great deal of nutrients from the soil during the growing season, Raymond had to rotate the tobacco crop to a different field each year to prevent the soil from becoming “exhausted.” This year, as an additional guard against soil depletion, he started the practice of adding some artificial fertilizer to the tobacco ground. He “broadcast” the fertilizer on the ground with a horse-drawn fertilizer spreader after disking the soil and before he finalized the seed bed with a peg-tooth harrow or drag. Following suggestions of tobacco experts at the F.S.A., he spread the fertilizer at a rate of 200 pounds per acre. Tobacco allotments are issued by the F.S.A. in sizes ranging from as little as 1/10th an acre upwards in steps of 1/10th of an acre. Generally, in Lincoln County, tobacco allotments ranged from ½ (or 5/10s) of an acre to a full-acre. As noted above, Raymond’s allotment was 7/10s of an acre. The transplanting stage was one of the stages where he really “felt” the size of this large allotment.

To be sure the ground intended for the tobacco that year could be worked up into a seedbed with the horses, just as in the other fields. However, the transplanting of the tobacco was all handwork. The little tobacco transplants were carefully dug up and placed in a large tub and then taken to the field. Then a long string with a stake on either end was uncoiled and stretched across the entire field. The string was tightened into a straight line across the entire length of the field and the stakes were pounded into the ground on either end of the field. Transplanting was an affair for the whole Thompson family. One family member would walk along the string with a stick or a pole and make little holes in the ground along one side of the string—each hole was 18” apart along the string. Another member of the Thompson family could then follow with the tub full of tobacco transplants and place one plant in each hole and then close up the hole around the roots of the transplant with dirt. Packing the ground around the new transplant assured good contact of the root with the dirt of the seedbed and guaranteed the best start possible for the new transplants. When one row was completed over the entire length of the field, the stakes at the ends of the field would be moved over in the seedbed 42”. The string was again tightened out straight across the field and the second row of tobacco transplants was set out in the field. This process was repeated until the whole 7/10ths-of-an-acre field was planted in tobacco.

Almost as soon as the whole field had been completely transplanted, the cultivation of the tobacco was begun.   Under the hot summer sun the tobacco transplants grew very fast. Generally, within three weeks after the transplanting of the tobacco, the young plants had grown to the point where the horses and the one row cultivator could not move easily between the rows without damaging the plants. Thus, all cultivation of the tobacco to eliminate weeds had to be completed within the three week period of time following the transplanting of the tobacco crop. Because of the rapid growing nature of the tobacco plants, there was no need to worry about cross cultivating the tobacco. The plants would soon be big enough to cover the space between the plants and shade out any weeds attempting to grow there. In the crush of the summer time field work, Raymond felt himself lucky to cultivate the tobacco three times in the three week period of time that he had to complete the cultivation of the tobacco. Especially since he needed to begin cutting and putting up his hay crop at the same time as he was attempting to cultivate the tobacco three times. Then there was the need to continue the cultivation and cross-cultivation of his corn crop. It was always a busy time. There just were not enough hours in the day. Raymond also knew that he would have to cultivate his corn at least once prior to hay season.

Haying was started at about the first of June. He needed to get the hay down and raked into windrows quickly. Cecil Lewis, who provided custom baling of the hay for the farmers in Harvey’s Creek, would be scheduling his New Holland Model 77 baler and Ford Model 8N tractor to visit the farms in the area rather soon. Raymond wanted to have his hay ready for any convenient time that Cecil might have to come to the Thompson farm. However, as he mowed and raked his hay, Raymond had to keep an eye on the tobacco to notice when plants began to grow buds in preparation for flowering. June was the time that the tobacco plants would begin to flower. Some times as soon as one week following the end of cultivation the tobacco plants would begin to flower. To keep the energy of the growing tobacco plants directed toward the growing leaves rather than into the production of flowers, the emerging buds had to be removed from the plants as soon as they started to develop. The operation of removing the flowering buds was another task that had to be completed by hand. The entire tobacco field had to be walked and the buds removed from each individual plant.

Even this was not the end of the hand work in the tobacco field, however. Once the flower buds had been removed, some of the tobacco plants would develop “suckers” or additional shoots which would spring up out of the same stem and root system. If allowed to grow these suckers would also sap away energy from the leaves of the plant. So, within a week after the deflowering of the tobacco plants, the field had to be walked again by the family to remove these suckers which may be attempting to grow. These tasks had to be fitted in to the summers work whenever time could be found during their busy summer schedule—whenever the family was not involved in putting up hay and/or cultivating the corn.   There was no time to rest and scarcely enough time to get all the field work done. Then, there were usually rainy days in which no work was accomplished at all. This year in 1953, however, Raymond fervently wished for a few more rainy days. He could see that the leaves of corn were starting to roll up, indicating the lack of water. August was incredibly dry. The radio reported that over in Kentucky the rainfall for the growing season was 12 full inches less than normal. In late August.

As Labor day  approached in 1953, the leaves on the tobacco plants began to turn from the dark green color of summer to the light green or yellow-green color that indicated that the tobacco plants were beginning to mature. All plants that mature or ripen in the fall, go through a process, whereby, the vital fluids of the plant are returning from the leaves to the roots in the ground for the winter. As the fluids flow out of the leaves, the leaves begin to loose their green color and start to yellow. The more yellow the leaves are, the more fluids have departed the leaves. In tobacco, these fluids in the leaves, and the ingredients that are contained in the fluids, are the very elements thing that make the tobacco leaves marketable. Thus, the proper time to cut the tobacco plants is just when the maturation of the leaves has begun. In this way all the fluids will be retained in the leaves. Accordingly, the tobacco plants are cut off at the stem.

Harvesting the tobacco is hand work which requires the work of the whole family. Cutting and handling is performed carefully so as to not damage the outside leaves. These outside or lower leaves are called flynes and are the most valuable leaves. The tobacco plants are then “speared” or placed on a thin 4 foot long stick. The stick full of tobacco plants is then hung upside down on a rack in the barn. Hanging upside down allows any fluids in the stem to flow back into the leaves. The barns in tobacco growing areas of the country are not like barns in other areas of the United States. Usually barns are built tight to prevent cold weather from infiltrating the inside of the barn. However, a tobacco barn is purposely constructed with the boards on the sides of the barn spaced so as to allow cracks between the vertically-placed boards in the walls of the barn. Observing a tobacco barn, a person will see daylight showing through the walls. These cracks allow air to pass through the walls of the barn and air-dry the tobacco hanging inside the barn. The process of air drying tobacco in the barn takes six to eight weeks.

During this time Raymond harvested his corn. The yield on the corn was disappointing because of the dry weather. Across Lincoln County in 1953, the yield of corn was down by 9%, from the year before—from 31.8 bushels per acre to 28.9 bushels per acre. (From the National Agricultural Statistics Service page on the website of the United States Department of Agriculture.)   Yet because the drought was limited to the eastern Kentucky and West Virginia areas there was no dramatic rise in price of corn. (Ibid.) Indeed, of the 81,574,000 acres of corn planted across the nation 98.6% (or 80,459,000 acres) was harvested in the fall of 1953, resulting in a nationwide bumper crop of corn that actually depressed corn prices. Additionally, the nationwide “per acre yield” from the 1953 corn harvest averaged 40.7 bushels per acre—fourth highest yield in the history of United States corn farming. On the Thompson farm, this condition meant that not as much corn was actually harvested and the price obtained for the small amount of corn that was harvested was low.

Thus, Raymond Thompson would feed a great deal of his corn to his beef cattle. Feeding more corn to the young calves would cause them to gain weight faster and be ready for market at an earlier date. This was one means of diversification of the corn crop that Raymond could employ on his own farm. If corn was not getting a good price then using it for cattle feed could possibly be a way of getting a more money for the corn. However, although surpluses were not as big a problem in the beef market, beef prices had been on a slow, but steady, decline since the December in 1952. After reaching a high of 35 to 36 cents a pound caused by the demands of the Korean War, beef prices had dipped to 20 cents per pound and even now was only was hovering around 25 cents per pound. (Omaha Choice Historic Beef Steer Prices from 1950-2005 page at the United States Department of Agriculture website on the Internet.) So, in 1953, even the beef market was a disappointment for Raymond.

Thus, Raymond’s hope for a successful crop year lay with his tobacco crop. Tobacco plants can withstand dry conditions better than corn. Proof of this was shown when the tobacco was harvested. Over all of Lincoln County a new record level tobacco harvest was reached with 1,426,000 lbs, over the entire county—up 2% from 1952. Considering that only 920 acres of tobacco were planted in 1953 as compared with 950 acres in 1952, this was a staggering result considering the extreme dryness of the growing season. The 1953 average yield in Lincoln County was 1,550 lbs. per acre—up almost 5½ % from 1952. The only explanation, that Raymond could find for the higher yield in a dry year was the fact that he had joined many of his neighbors in adding artificial fertilizer to the tobacco ground. Before the tobacco leaves could be sold, however, the Thompson family had to strip the leaves off the stem of each plant. Starting, generally, in November, the process of stripping was also a long process which involved the most hand labor of all the tobacco growing procedures. The sticks full of dried plants were taken down from the drying racks in the barn. The plants were removed from the sticks and the leaves were then stripped from the stem. In order that the leaves would not be too brittle to be destroyed by handling, Raymond usually waited for one of the uncommonly humid days in the fall to get the racks down from the barn and begin the process of stripping. Handling the leaves in a relatively humid environment would not damage the leaves especially the outer or lower leaves which were the most valuable leaves. Handling the leaves at this stage was somewhat messy work. While stripping the leaves by hand a dark residue would settle on the hands.

Still it was with some anticipation that the family performed the tasks. At the end of the process, Raymond knew that, in an ordinary year, the 7/10 of an acre allotment would allow his family to load the Chevy pickup up with a thousand pounds of leaves for delivery to the Huntington Tobacco Warehouse at 20 Twenty-Sixth Street in Huntington, West Virginia. Once at the tobacco warehouse, the tobacco would be auctioned off to the highest bidder. Auctions were held at the warehouse from November through January each year. Buyers from the R.J. Reynolds, American Tobacco, Phillip Morris and all the other tobacco companies would be present at these auctions to bid on the tobacco.  Coming this late in the year and being the major cash crop on the farm, Raymond would use a portion of the money he would receive for the tobacco to pay off the debts. Then they would get the new shoes and clothes that the children would need.

(Carol [Young] Mullins, granddaughter of Stanley and Garnet Young, remembers that she and her family too anticipated Christmas as they worked to strip the tobacco leaves. The Young children looked forward to a happy Christmas which would be financed in part by the money the fetched at market. Anticipating Christmas led the children to work diligently at stripping the tobacco leaves.)

This year, in the late fall of 1953 Raymond looked over at his children as they worked together stripping the tobacco. They were becoming adults. Eleanor Gay (“Gay”) and Patricia Fay (“Fay”) were already teenagers and would soon be setting out on their own. Soon he would be more shorthanded that he already was in doing his farm work. He became aware that he would soon have to think about doing something to save time in his farming operation. Toward this end he had been considering the purchase of a farm tractor. He felt this was the year that he would have to make his move to purchase a farm tractor and replace the horses on his farm. Accordingly, over the winter of 1953-54 he visited Henderson Implement Company in downtown Hurricane, West Virginia. Hurricane, West Virginia is located across the county line into Putnam County about 14 miles north of the Thompson farm. Bernie Henderson had started selling horse drawn McCormick-Deering equipment from his dealership located on Main Street in downtown Hurricane. However, since the end of the Second World War, he had found that the market for small tractors was really growing by leaps and bounds. In addition to the Farmall C and Super C, he found that the Farmall Cub was becoming a mainstay of the sales from his dealership. Continue reading Tobacco Farming with a Farmall Super C